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Preface
This book is an introduction to the world of machine learning, a topic that is becoming more
and more important, not only for IT professionals and analysts but also for all those
scientists and engineers who want to exploit the enormous power of techniques such as
predictive analysis, classification, clustering and natural language processing. Of course, it's
impossible to cover all the details with the appropriate precision; for this reason, some
topics are only briefly described, giving the user the double opportunity to focus only on
some fundamental concepts and, through the references, examine in depth all those
elements that will generate much interest. I apologize in advance for any imprecision or
mistakes, and I'd like to thank all Packt editors for their collaboration and constant
attention.

I dedicate this book to my parents, who always believed in me and encouraged me to
cultivate my passion for this extraordinary subject.

What this book covers
Chapter 1, A Gentle Introduction to Machine Learning, introduces the world of machine
learning, explaining the fundamental concepts of the most important approaches to creating
intelligent applications.

Chapter 2, Important Elements in Machine Learning, explains the mathematical concepts
regarding the most common machine learning problems, including the concept of
learnability and some elements of information theory.

Chapter 3, Feature Selection and Feature Engineering, describes the most important techniques
used to preprocess a dataset, select the most informative features, and reduce the original
dimensionality.

Chapter 4, Linear Regression, describes the structure of a continuous linear model, focusing
on the linear regression algorithm. This chapter covers also Ridge, Lasso, and ElasticNet
optimizations, and other advanced techniques.

Chapter 5, Logistic Regression, introduces the concept of linear classification, focusing on
logistic regression and stochastic gradient descent algorithms. The second part covers the
most important evaluation metrics.

Chapter 6, Naive Bayes, explains the Bayes probability theory and describes the structure of
the most diffused naive Bayes classifiers.
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Chapter 7, Support Vector Machines, introduces this family of algorithms, focusing on both
linear and nonlinear classification problems.

Chapter 8, Decision Trees and Ensemble Learning, explains the concept of a hierarchical
decision process and describes the concepts of decision tree classification, Bootstrap and
bagged trees, and voting classifiers.

Chapter 9 , Clustering Fundamentals, introduces the concept of clustering, describing the k-
means algorithm and different approaches to determining the optimal number of clusters.
In the second part, the chapter covers other clustering algorithms such as DBSCAN and
spectral clustering.

Chapter 10 , Hierarchical Clustering, continues the explanation started in the previous
chapter and introduces the concept of agglomerative clustering.

Chapter 11, Introduction to Recommendation Systems, explains the most diffused algorithms
employed in recommender systems: content- and user-based strategies, collaborative
filtering, and alternating least square.

Chapter 12, Introduction to Natural Language Processing, explains the concept of bag-of-
words and introduces the most important techniques required to efficiently process natural
language datasets.

Chapter 13, Topic Modeling and Sentiment Analysis in NLP, introduces the concept of topic
modeling and describes the most important algorithms, such as latent semantic analysis and
latent Dirichlet allocation. In the second part, the chapter covers the problem of sentiment
analysis, explaining the most diffused approaches to address it.

Chapter 14, A Brief Introduction to Deep Learning and TensorFlow, introduces the world of
deep learning, explaining the concept of neural networks and computational graphs. The
second part is dedicated to a brief exposition of the main concepts regarding the
TensorFlow and Keras frameworks, with some practical examples.

Chapter 15, Creating a Machine Learning Architecture, explains how to define a complete
machine learning pipeline, focusing on the peculiarities and drawbacks of each step.

What you need for this book
There are no particular mathematical prerequisites; however, to fully understand all the
algorithms, it's important to have a basic knowledge of linear algebra, probability theory,
and calculus.
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All practical examples are written in Python and use the scikit-learn machine learning
framework, Natural Language Toolkit (NLTK), Crab, langdetect, Spark, gensim, and
TensorFlow (deep learning framework). These are available for Linux, Mac OS X, and
Windows, with Python 2.7 and 3.3+. When a particular framework is employed for a
specific task, detailed instructions and references will be provided.

scikit-learn, NLTK, and TensorFlow can be installed by following the
instructions provided on these websites: h t t p ://s c i k i t - l e a r n . o r g , h t t p

://w w w . n l t k . o r g , and h t t p s ://w w w . t e n s o r f l o w . o r g .

Who this book is for
This book is for IT professionals who want to enter the field of data science and are very
new to machine learning. Familiarity with the Python language will be invaluable here.
Moreover, basic mathematical knowledge (linear algebra, calculus, and probability theory)
is required to fully comprehend the content of most of the chapters.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We have
created a configuration through the SparkConf class."

Any command-line input or output is written as follows:

>>> nn = NearestNeighbors(n_neighbors=10, radius=5.0, metric='hamming')
>>> nn.fit(items)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t , and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux
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The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a c h i n e - L e a r n i n g - A l g o r i t h m s . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a c h i n e L e a r n i n g A l g o r i t h m s _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t , and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.
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1
A Gentle Introduction to

Machine Learning
In the last few years, machine learning has become one of the most important and prolific IT
and artificial intelligence branches. It's not surprising that its applications are becoming
more widespread day by day in every business sector, always with new and more powerful
tools and results. Open source, production-ready frameworks, together with hundreds of
papers published every month, are contributing to one of the most pervasive
democratization processes in IT history. But why is machine learning so important and
valuable?

Introduction - classic and adaptive machines
Since time immemorial, human beings have built tools and machines to simplify their work
and reduce the overall effort needed to complete many different tasks. Even without
knowing any physical law, they invented levers (formally described for the first time by
Archimedes), instruments, and more complex machines to carry out longer and more
sophisticated procedures. Hammering a nail became easier and more painless thanks to a
simple trick, so did moving heavy stones or wood using a cart. But, what’s the difference
between these two examples? Even if the latter is still a simple machine, its complexity
allows a person to carry out a composite task without thinking about each step. Some
fundamental mechanical laws play a primary role in allowing a horizontal force to contrast
gravity efficiently, but neither human beings nor horses or oxen knew anything about them.
The primitive people simply observed how a genial trick (the wheel) could improve their
lives.
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The lesson we've learned is that a machine is never efficient or trendy without a concrete
possibility to use it with pragmatism. A machine is immediately considered useful and
destined to be continuously improved if its users can easily understand what tasks can be
completed with less effort or completely automatically. In the latter case, some intelligence
seems to appear next to cogs, wheels, or axles. So a further step can be added to our
evolution list: automatic machines, built (nowadays we’d say programmed) to accomplish
specific goals by transforming energy into work. Wind or watermills are some examples of
elementary tools able to carry out complete tasks with minimal (compared to a direct
activity) human control.

In the following figure, there's a generic representation of a classical system that receives
some input values, processes them, and produces output results:

But again, what’s the key to the success of a mill? It’s not hasty at all to say that human
beings have tried to transfer some intelligence into their tools since the dawn of technology.
Both the water in a river and the wind show a behavior that we can simply call flowing.
They have a lot of energy to give us free of any charge, but a machine should have some
awareness to facilitate this process. A wheel can turn around a fixed axle millions of times,
but the wind must find a suitable surface to push on. The answer seems obvious, but you
should try to think about people without any knowledge or experience; even if implicitly,
they started a brand new approach to technology. If you prefer to reserve the word
intelligence to more recent results, it’s possible to say that the path started with tools,
moved first to simple machines and then to smarter ones.
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Without further intermediate (but not less important) steps, we can jump into our epoch
and change the scope of our discussion. Programmable computers are widespread, flexible,
and more and more powerful instruments; moreover, the diffusion of the internet allowed
us to share software applications and related information with minimal effort. The word-
processing software that I'm using, my email client, a web browser, and many other
common tools running on the same machine are all examples of such flexibility. It's
undeniable that the IT revolution dramatically changed our lives and sometimes improved
our daily jobs, but without machine learning (and all its applications), there are still many
tasks that seem far out of computer domain. Spam filtering, Natural Language Processing,
visual tracking with a webcam or a smartphone, and predictive analysis are only a few
applications that revolutionized human-machine interaction and increased our
expectations. In many cases, they transformed our electronic tools into actual cognitive
extensions that are changing the way we interact with many daily situations. They achieved
this goal by filling the gap between human perception, language, reasoning, and model and
artificial instruments.

Here's a schematic representation of an adaptive system:

Such a system isn't based on static or permanent structures (model parameters and
architectures) but rather on a continuous ability to adapt its behavior to external signals
(datasets or real-time inputs) and, like a human being, to predict the future using uncertain
and fragmentary pieces of information.
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Only learning matters
What does learning exactly mean? Simply, we can say that learning is the ability to change
according to external stimuli and remembering most of all previous experiences. So 
machine learning is an engineering approach that gives maximum importance to every
technique that increases or improves the propensity for changing adaptively. A mechanical
watch, for example, is an extraordinary artifact, but its structure obeys stationary laws and
becomes useless if something external is changed. This ability is peculiar to animals and, in
particular, to human beings; according to Darwin’s theory, it’s also a key success factor for
the survival and evolution of all species. Machines, even if they don't evolve autonomously,
seem to obey the same law.

Therefore, the main goal of machine learning is to study, engineer, and improve
mathematical models which can be trained (once or continuously) with context-related data
(provided by a generic environment), to infer the future and to make decisions without
complete knowledge of all influencing elements (external factors). In other words, an agent
(which is a software entity that receives information from an environment, picks the best
action to reach a specific goal, and observes the results of it) adopts a statistical learning
approach, trying to determine the right probability distributions and use them to compute
the action (value or decision) that is most likely to be successful (with the least error).

I do prefer using the term inference instead of prediction only to avoid the weird (but not
so uncommon) idea that machine learning is a sort of modern magic. Moreover, it's possible
to introduce a fundamental statement: an algorithm can extrapolate general laws and learn
their structure with relatively high precision only if they affect the actual data. So the term
prediction can be freely used, but with the same meaning adopted in physics or system
theory. Even in the most complex scenarios, such as image classification with convolutional
neural networks, every piece of information (geometry, color, peculiar features, contrast,
and so on) is already present in the data and the model has to be flexible enough to extract
and learn it permanently.

In the next sections, there's a brief description of some common approaches to machine
learning. Mathematical models, algorithms, and practical examples will be discussed in
later chapters.
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Supervised learning
A supervised scenario is characterized by the concept of a teacher or supervisor, whose
main task is to provide the agent with a precise measure of its error (directly comparable
with output values). With actual algorithms, this function is provided by a training set
made up of couples (input and expected output). Starting from this information, the agent
can correct its parameters so as to reduce the magnitude of a global loss function. After each
iteration, if the algorithm is flexible enough and data elements are coherent, the overall
accuracy increases and the difference between the predicted and expected value becomes
close to zero. Of course, in a supervised scenario, the goal is training a system that must also
work with samples never seen before. So, it's necessary to allow the model to develop a
generalization ability and avoid a common problem called overfitting, which causes an
overlearning due to an excessive capacity (we're going to discuss this in more detail in the
next chapters, however we can say that one of the main effects of such a problem is the
ability to predict correctly only the samples used for training, while the error for the
remaining ones is always very high).

In the following figure, a few training points are marked with circles and the thin blue line
represents a perfect generalization (in this case, the connection is a simple segment):
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Two different models are trained with the same datasets (corresponding to the two larger
lines). The former is unacceptable because it cannot generalize and capture the fastest
dynamics (in terms of frequency), while the latter seems a very good compromise between
the original trend and a residual ability to generalize correctly in a predictive analysis.

Formally, the previous example is called regression because it's based on continuous output
values. Instead, if there is only a discrete number of possible outcomes (called categories),
the process becomes a classification. Sometimes, instead of predicting the actual category,
it's better to determine its probability distribution. For example, an algorithm can be trained
to recognize a handwritten alphabetical letter, so its output is categorical (in English, there'll
be 26 allowed symbols). On the other hand, even for human beings, such a process can lead
to more than one probable outcome when the visual representation of a letter isn't clear
enough to belong to a single category. That means that the actual output is better described
by a discrete probability distribution (for example, with 26 continuous values normalized so
that they always sum up to 1).

In the following figure, there's an example of classification of elements with two features.
The majority of algorithms try to find the best separating hyperplane (in this case, it's a
linear problem) by imposing different conditions. However, the goal is always the same:
reducing the number of misclassifications and increasing the noise-robustness. For example,
look at the triangular point that is closer to the plane (its coordinates are about [5.1 - 3.0]). If
the magnitude of the second feature were affected by noise and so the value were quite
smaller than 3.0, a slightly higher hyperplane could wrongly classify it. We're going to
discuss some powerful techniques to solve these problems in later chapters.



A Gentle Introduction to Machine Learning

[ 12 ]

Common supervised learning applications include:

Predictive analysis based on regression or categorical classification
Spam detection
Pattern detection
Natural Language Processing
Sentiment analysis
Automatic image classification
Automatic sequence processing (for example, music or speech)

Unsupervised learning
This approach is based on the absence of any supervisor and therefore of absolute error
measures; it's useful when it's necessary to learn how a set of elements can be grouped
(clustered) according to their similarity (or distance measure). For example, looking at the
previous figure, a human being can immediately identify two sets without considering the
colors or the shapes. In fact, the circular dots (as well as the triangular ones) determine a
coherent set; it is separate from the other one much more than how its points are internally
separated. Using a metaphor, an ideal scenario is a sea with a few islands that can be
separated from each other considering only their mutual position and internal cohesion.
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In the next figure, each ellipse represents a cluster and all the points inside its area can be
labeled in the same way. There are also boundary points (such as the triangles overlapping
the circle area) that need a specific criterion (normally a trade-off distance measure) to
determine the corresponding cluster. Just as for classification with ambiguities (P and
malformed R), a good clustering approach should consider the presence of outliers and
treat them so as to increase both the internal coherence (visually, this means picking a
subdivision that maximizes the local density) and the separation among clusters.

For example, it's possible to give priority to the distance between a single point and a
centroid, or the average distance among points belonging to the same cluster and different
ones. In this figure, all boundary triangles are close to each other, so the nearest neighbor is
another triangle. However, in real-life problems, there are often boundary areas where
there's a partial overlap, meaning that some points have a high degree of uncertainty due to
their feature values.
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Another interpretation can be expressed using probability distributions. If you look at the
ellipses, they represent the area of multivariate Gaussians bound between a minimum and
maximum variance. Considering the whole domain, a point (for example, a blue star) could
potentially belong to all clusters, but the probability given by the first one (lower-left
corner) is the highest, and so this determines the membership. Once the variance and mean
(in other words, the shape) of all Gaussians become stable, each boundary point is
automatically captured by a single Gaussian distribution (except in the case of equal
probabilities). Technically, we say that such an approach maximizes the likelihood of a
Gaussian mixture given a certain dataset. This is a very important statistical learning
concept that spans many different applications, so it will be examined in more depth in the
next chapter. Moreover, we're going to discuss some common clustering methodologies,
considering both strong and weak points and comparing their performances for various test
distributions.

Other important techniques involve the usage of both labeled and unlabeled data. This
approach is therefore called semi-supervised and can be adopted when it's necessary to
categorize a large amount of data with a few complete (labeled) examples or when there's
the need to impose some constraints to a clustering algorithm (for example, assigning some
elements to a specific cluster or excluding others).

Commons unsupervised applications include:

Object segmentation (for example, users, products, movies, songs, and so on)
Similarity detection
Automatic labeling

Reinforcement learning
Even if there are no actual supervisors, reinforcement learning is also based on feedback
provided by the environment. However, in this case, the information is more qualitative
and doesn't help the agent in determining a precise measure of its error. In reinforcement
learning, this feedback is usually called reward (sometimes, a negative one is defined as a
penalty) and it's useful to understand whether a certain action performed in a state is
positive or not. The sequence of most useful actions is a policy that the agent has to learn, so
to be able to make always the best decision in terms of the highest immediate and
cumulative reward. In other words, an action can also be imperfect, but in terms of a global
policy it has to offer the highest total reward. This concept is based on the idea that a
rational agent always pursues the objectives that can increase his/her wealth. The ability to
see over a distant horizon is a distinction mark for advanced agents, while short-sighted
ones are often unable to correctly evaluate the consequences of their immediate actions and
so their strategies are always sub-optimal.
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Reinforcement learning is particularly efficient when the environment is not completely
deterministic, when it's often very dynamic, and when it's impossible to have a precise error
measure. During the last few years, many classical algorithms have been applied to deep
neural networks to learn the best policy for playing Atari video games and to teach an agent
how to associate the right action with an input representing the state (usually a screenshot
or a memory dump).

In the following figure, there's a schematic representation of a deep neural network trained
to play a famous Atari game. As input, there are one or more subsequent screenshots (this
can often be enough to capture the temporal dynamics as well). They are processed using
different layers (discussed briefly later) to produce an output that represents the policy for a
specific state transition. After applying this policy, the game produces a feedback (as a
reward-penalty), and this result is used to refine the output until it becomes stable (so the
states are correctly recognized and the suggested action is always the best one) and the total
reward overcomes a predefined threshold.

We're going to discuss some examples of reinforcement learning in the chapter dedicated to
introducing deep learning and TensorFlow.
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Beyond machine learning - deep learning
and bio-inspired adaptive systems
During the last few years, thanks to more powerful and cheaper computers, many
researchers started adopting complex (deep) neural architectures to achieve goals there
were unimaginable only two decades ago. Since 1957, when Rosenblatt invented the first
perceptron, interest in neural networks has grown more and more. However, many
limitations (concerning memory and CPU speed) prevented massive research and hid lots
of potential applications of these kinds of algorithms.

In the last decade, many researchers started training bigger and bigger models, built with
several different layers (that's why this approach is called deep learning), to solve new 
challenging problems. The availability of cheap and fast computers allowed them to get
results in acceptable timeframes and to use very large datasets (made up of images, texts,
and animations). This effort led to impressive results, in particular for classification based
on photo elements and real-time intelligent interaction using reinforcement learning.

The idea behind these techniques is to create algorithms that work like a brain and many
important advancements in this field have been achieved thanks to the contribution of
neurosciences and cognitive psychology. In particular, there's a growing interest in pattern
recognition and associative memories whose structure and functioning are similar to what
happens in the neocortex. Such an approach also allows simpler algorithms called model-
free; these aren't based on any mathematical-physical formulation of a particular problem
but rather on generic learning techniques and repeating experiences.

Of course, testing different architectures and optimization algorithms is quite simpler (and
it can be done with parallel processing) than defining a complex model (which is also more
difficult to adapt to different contexts). Moreover, deep learning showed better performance
than other approaches, even without a context-based model. This suggests that in many
cases, it's better to have a less precise decision made with uncertainty than a precise one
determined by the output of a very complex model (often not so fast). For animals, this is
often a matter of life and death, and if they succeed, it is thanks to an implicit renounce of
some precision.
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Common deep learning applications include:

Image classification
Real-time visual tracking
Autonomous car driving
Logistic optimization
Bioinformatics
Speech recognition

Many of these problems can also be solved using classic approaches, sometimes much more
complex, but deep learning outperformed them all. Moreover, it allowed extending their
application to contexts initially considered extremely complex, such as autonomous cars or
real-time visual object identification.

This book covers in detail only some classical algorithms; however, there are many
resources that can be read both as an introduction and for a more advanced insight.

Many interesting results have been achieved by the Google DeepMind
team (h t t p s ://d e e p m i n d . c o m ) and I suggest you visit their website to
learn about their latest research and goals.

Machine learning and big data
Another area that can be exploited using machine learning is big data. After the first release
of Apache Hadoop, which implemented an efficient MapReduce algorithm, the amount of
information managed in different business contexts grew exponentially. At the same time,
the opportunity to use it for machine learning purposes arose and several applications such
as mass collaborative filtering became reality.

Imagine an online store with a million users and only one thousand products. Consider a
matrix where each user is associated with every product by an implicit or explicit ranking.
This matrix will contain 1,000,000 x 1,000 cells, and even if the number of products is very
limited, any operation performed on it will be slow and memory-consuming. Instead, using
a cluster, together with parallel algorithms, such a problem disappears and operations with
higher dimensionality can be carried out in a very short time.
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Think about training an image classifier with a million samples. A single instance needs to
iterate several times, processing small batches of pictures. Even if this problem can be
performed using a streaming approach (with a limited amount of memory), it's not
surprising to wait even for a few days before the model begins to perform well. Adopting a
big data approach instead, it's possible to asynchronously train several local models,
periodically share the updates, and re-synchronize them all with a master model. This
technique has also been exploited to solve some reinforcement learning problems, where
many agents (often managed by different threads) played the same game, providing their
periodical contribute to a global intelligence.

Not every machine learning problem is suitable for big data, and not all big datasets are
really useful when training models. However, their conjunction in particular situations can
drive to extraordinary results by removing many limitations that often affect smaller
scenarios.

In the chapter dedicated to recommendation systems, we're going to discuss how to
implement collaborative filtering using Apache Spark. The same framework will be also
adopted for an example of Naive Bayes classification.

If you want to know more about the whole Hadoop ecosystem, visit h t t p

://h a d o o p . a p a c h e . o r g . Apache Mahout (h t t p ://m a h o u t . a p a c h e . o r g ) is
a dedicated machine learning framework and Spark (h t t p ://s p a r k . a p a c h

e . o r g ), one the fastest computational engines, has a module called MLib
that implements many common algorithms that benefit from parallel
processing.

Further reading
An excellent introduction to artificial intelligence can be found in the first few chapters of
Russel S., Norvig P., Artificial Intelligence: A Modern Approach, Pearson. In the second
volume, there's also a very extensive discussion on statistical learning in many different
contexts. A complete book on deep learning is Goodfellow I., Bengio Y., Courville A., Deep
Learning, The MIT Press. If you would like to learn more about how the neocortex works, a
simple but stunning introduction is present in Kurzweil R., How to Create a Mind,
Duckworth Overlook. A comprehensive introduction to the Python programming language
can be found in Lutz M., Learning Python, O'Reilly.
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Summary
In this chapter, we introduced the concept of adaptive systems; they can learn from their
experiences and modify their behavior in order to maximize the possibility of reaching a
specific goal. Machine learning is the name given to a set of techniques that allow
implementing adaptive algorithms to make predictions and to auto-organize input data
according to their common features.

The three main learning strategies are supervised, unsupervised, and reinforcement. The
first one assumes the presence of a teacher that provides a precise feedback on errors. The
algorithm can hence compare its output with the right one and correct its parameters
accordingly. In an unsupervised scenario, there are no external teachers, so everything is
learned directly from the data. An algorithm will try to find out all features common to a
group of elements to be able to associate new samples with the right cluster. Examples of
the former type are provided by all the automatic classifications of objects into a specific
category according to some known features, while common applications of unsupervised
learning are the automatic groupings of items with a subsequent labeling or processing. The
third kind of learning is similar to supervised, but it receives only an environmental
feedback about the quality of its actions. It doesn't know exactly what is wrong or the
magnitude of its error but receives generic information that helps it in deciding whether to
continue to adopt a policy or to pick another one.

In the next chapter, we're going to discuss some fundamental elements of machine learning,
with particular focus on the mathematical notation and the main definitions that we'll need
in all the other chapters. We'll also discuss important statistical learning concepts and some
theory about learnability and its limits.



2
Important Elements in Machine

Learning
In this chapter, we're going to discuss some important elements and approaches which span
through all machine learning topics and also create a philosophical foundation for many
common techniques. First of all, it's useful to understand the mathematical foundation of
data formats and prediction functions. In most algorithms, these concepts are treated in
different ways, but the goal is always the same. More recent techniques, such as deep
learning, extensively use energy/loss functions, just like the one described in this chapter,
and even if there are slight differences, a good machine learning result is normally
associated with the choice of the best loss function and the usage of the right algorithm to
minimize it.

Data formats
In a supervised learning problem, there will always be a dataset, defined as a finite set of
real vectors with m features each:
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Considering that our approach is always probabilistic, we need to consider each X as drawn
from a statistical multivariate distribution D. For our purposes, it's also useful to add a very
important condition upon the whole dataset X: we expect all samples to be independent
and identically distributed (i.i.d). This means all variables belong to the same distribution
D, and considering an arbitrary subset of m values, it happens that:

The corresponding output values can be both numerical-continuous or categorical. In the
first case, the process is called regression, while in the second, it is called classification.
Examples of numerical outputs are:

Categorical examples are:

We define generic regressor, a vector-valued function which associates an input value to a 
continuous output and generic classifier, a vector-values function whose predicted output
is categorical (discrete). If they also depend on an internal parameter vector which
determines the actual instance of a generic predictor, the approach is called parametric
learning:
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On the other hand, non-parametric learning doesn't make initial assumptions about the
family of predictors (for example, defining a generic parameterized version of r(...) and
c(...)). A very common non-parametric family is called instance-based learning and makes
real-time predictions (without pre-computing parameter values) based on hypothesis
determined only by the training samples (instance set). A simple and widespread approach
adopts the concept of neighborhoods (with a fixed radius). In a classification problem, a
new sample is automatically surrounded by classified training elements and the output
class is determined considering the preponderant one in the neighborhood. In this book,
we're going to talk about another very important algorithm family belonging to this class:
kernel-based support vector machines. More examples can be found in Russel S., Norvig
P., Artificial Intelligence: A Modern Approach, Pearson.

The internal dynamics and the interpretation of all elements are peculiar to each single
algorithm, and for this reason, we prefer not to talk now about thresholds or probabilities
and try to work with an abstract definition. A generic parametric training process must find
the best parameter vector which minimizes the regression/classification error given a
specific training dataset and it should also generate a predictor that can correctly generalize
when unknown samples are provided.

Another interpretation can be expressed in terms of additive noise:

For our purposes, we can expect zero-mean and low-variance Gaussian noise added to a
perfect prediction. A training task must increase the signal-noise ratio by optimizing the
parameters. Of course, whenever such a term doesn't have zero mean (independently from
the other X values), probably it means that there's a hidden trend that must be taken into
account (maybe a feature that has been prematurely discarded). On the other hand, high
noise variance means that X is dirty and its measures are not reliable.

Until now we've assumed that both regression and classification operate on m-length
vectors but produce a single value or single label (in other words, an input vector is always
associated with only one output element). However, there are many strategies to handle
multi-label classification and multi-output regression.
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In unsupervised learning, we normally only have an input set X with m-length vectors, and
we define clustering function (with n target clusters) with the following expression:

In most scikit-learn models, there is an instance variable coef_ which contains all trained
parameters. For example, in a single parameter linear regression (we're going to widely
discuss it in the next chapters), the output will be:

>>> model = LinearRegression()
>>> model.fit(X, Y)
>>> model.coef_
array([ 9.10210898])

Multiclass strategies
When the number of output classes is greater than one, there are two main possibilities to
manage a classification problem:

One-vs-all
One-vs-one

In both cases, the choice is transparent and the output returned to the user will always be
the final value or class. However, it's important to understand the different dynamics in
order to optimize the model and to always pick the best alternative.

One-vs-all
This is probably the most common strategy and is widely adopted by scikit-learn for most
of its algorithms. If there are n output classes, n classifiers will be trained in parallel
considering there is always a separation between an actual class and the remaining ones.
This approach is relatively lightweight (at most, n-1 checks are needed to find the right
class, so it has an O(n) complexity) and, for this reason, it's normally the default choice and
there's no need for further actions.
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One-vs-one
The alternative to one-vs-all is training a model for each pair of classes. The complexity is
no longer linear (it's O(n2) indeed) and the right class is determined by a majority vote. In
general, this choice is more expensive and should be adopted only when a full dataset
comparison is not preferable.

If you want to learn more about multiclass strategies implemented by
scikit-learn, visit
h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /m u l t i c l a s s . h t m l .

Learnability
A parametric model can be split into two parts: a static structure and a dynamic set of
parameters. The former is determined by choice of a specific algorithm and is normally
immutable (except in the cases when the model provides some re-modeling functionalities),
while the latter is the objective of our optimization. Considering n unbounded parameters,
they generate an n-dimensional space (imposing bounds results in a sub-space without
relevant changes in our discussion) where each point, together with the immutable part of
the estimator function, represents a learning hypothesis H (associated with a specific set of
parameters):
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The goal of a parametric learning process is to find the best hypothesis whose
corresponding prediction error is minimum and the residual generalization ability is
enough to avoid overfitting. In the following figure, there's an example of a dataset whose
points must be classified as red (Class A) or blue (Class B). Three hypotheses are shown:
the first one (the middle line starting from left) misclassifies one sample, while the lower
and upper ones misclassify 13 and 23 samples respectively:

Of course, the first hypothesis is optimal and should be selected; however, it's important to
understand an essential concept which can determine a potential overfitting. Think about
an n-dimensional binary classification problem. We say that the dataset X is linearly separable
(without transformations) if there exists a hyperplane which divides the space into two
subspaces containing only elements belonging to the same class. Removing the constraint of
linearity, we have infinite alternatives using generic hypersurfaces. However, a parametric
model adopts only a family of non-periodic and approximate functions whose ability to
oscillate and fit the dataset is determined (sometimes in a very complex way) by the
number of parameters.
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Consider the example shown in the following figure:

The blue classifier is linear while the red one is cubic. At a glance, non-linear strategy seems
to perform better, because it can capture more expressivity, thanks to its concavities.
However, if new samples are added following the trend defined by the last four ones (from
the right), they'll be completely misclassified. In fact, while a linear function is globally
better but cannot capture the initial oscillation between 0 and 4, a cubic approach can fit this
data almost perfectly but, at the same time, loses its ability to keep a global linear trend.
Therefore, there are two possibilities:

If we expect future data to be exactly distributed as training samples, a more
complex model can be a good choice, to capture small variations that a lower-
level one will discard. In this case, a linear (or lower-level) model will drive to
underfitting, because it won't be able to capture an appropriate level of
expressivity.
If we think that future data can be locally distributed differently but keeps a
global trend, it's preferable to have a higher residual misclassification error as
well as a more precise generalization ability. Using a bigger model focusing only
on training data can drive to overfitting.
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Underfitting and overfitting
The purpose of a machine learning model is to approximate an unknown function that
associates input elements to output ones (for a classifier, we call them classes). However, a
training set is normally a representation of a global distribution, but it cannot contain all
possible elements; otherwise the problem could be solved with a one-to-one association. In
the same way, we don't know the analytic expression of a possible underlying function,
therefore, when training, it's necessary to think about fitting the model but keeping it free to
generalize when an unknown input is presented. Unfortunately, this ideal condition is not
always easy to find and it's important to consider two different dangers:

Underfitting: It means that the model isn't able to capture the dynamics shown
by the same training set (probably because its capacity is too limited).
Overfitting: the model has an excessive capacity and it's not more able to
generalize considering the original dynamics provided by the training set. It can
associate almost perfectly all the known samples to the corresponding output
values, but when an unknown input is presented, the corresponding prediction
error can be very high.

In the following picture, there are examples of interpolation with low-capacity
(underfitting), normal-capacity (normal fitting), and excessive capacity (overfitting):

It's very important to avoid both underfitting and overfitting. Underfitting is easier to detect
considering the prediction error, while overfitting may prove to be more difficult to
discover as it could be initially considered the result of a perfect fitting.
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Cross-validation and other techniques that we're going to discuss in the next chapters can
easily show how our model works with test samples never seen during the training phase.
That way, it would be possible to assess the generalization ability in a broader context
(remember that we're not working with all possible values, but always with a subset that
should reflect the original distribution).

However, a generic rule of thumb says that a residual error is always necessary to
guarantee a good generalization ability, while a model that shows a validation accuracy of
99.999... percent on training samples is almost surely overfitted and will likely be unable to
predict correctly when never-seen input samples are provided.

Error measures
In general, when working with a supervised scenario, we define a non-negative error
measure em which takes two arguments (expected and predicted output) and allows us to
compute a total error value over the whole dataset (made up of n samples):

This value is also implicitly dependent on the specific hypothesis H through the parameter
set, therefore optimizing the error implies finding an optimal hypothesis (considering the 
hardness of many optimization problems, this is not the absolute best one, but an acceptable
approximation). In many cases, it's useful to consider the mean square error (MSE):
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Its initial value represents a starting point over the surface of a n-variables function. A
generic training algorithm has to find the global minimum or a point quite close to it
(there's always a tolerance to avoid an excessive number of iterations and a consequent risk
of overfitting). This measure is also called loss function because its value must be
minimized through an optimization problem. When it's easy to determine an element which
must be maximized, the corresponding loss function will be its reciprocal.

Another useful loss function is called zero-one-loss and it's particularly efficient for binary
classifications (also for one-vs-rest multiclass strategy):

This function is implicitly an indicator and can be easily adopted in loss functions based on
the probability of misclassification.

A helpful interpretation of a generic (and continuous) loss function can be expressed in
terms of potential energy:

The predictor is like a ball upon a rough surface: starting from a random point where
energy (=error) is usually rather high, it must move until it reaches a stable equilibrium
point where its energy (relative to the global minimum) is null. In the following figure,
there's a schematic representation of some different situations:
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Just like in the physical situation, the starting point is stable without any external
perturbation, so to start the process, it's needed to provide initial kinetic energy. However,
if such an energy is strong enough, then after descending over the slope the ball cannot stop
in the global minimum. The residual kinetic energy can be enough to overcome the ridge
and reach the right valley. If there are not other energy sources, the ball gets trapped in the
plain valley and cannot move anymore. There are many techniques that have been
engineered to solve this problem and avoid local minima. However, every situation must
always be carefully analyzed to understand what level of residual energy (or error) is
acceptable, or whether it's better to adopt a different strategy. We're going to discuss some
of them in the next chapters.

PAC learning
In many cases machine learning seems to work seamlessly, but is there any way to
determine formally the learnability of a concept? In 1984, the computer scientist L. Valiant
proposed a mathematical approach to determine whether a problem is learnable by a
computer. The name of this technique is PAC, or probably approximately correct.
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The original formulation (you can read it in Valiant L., A Theory of the Learnable,
Communications of the ACM, Vol. 27, No. 11 , Nov. 1984) is based on a particular hypothesis,
however, without a considerable loss of precision, we can think about a classification
problem where an algorithm A has to learn a set of concepts. In particular, a concept is a
subset of input patterns X which determine the same output element. Therefore, learning a
concept (parametrically) means minimizing the corresponding loss function restricted to a
specific class, while learning all possible concepts (belonging to the same universe), means
finding the minimum of a global loss function.

However, given a problem, we have many possible (sometimes, theoretically infinite)
hypotheses and a probabilistic trade-off is often necessary. For this reason, we accept good
approximations with high probability based on a limited number of input elements and
produced in polynomial time.

Therefore, an algorithm A can learn the class C of all concepts (making them PAC learnable)
if it's able to find a hypothesis H with a procedure O(nk) so that A, with a probability p, can
classify all patterns correctly with a maximum allowed error me. This must be valid for all
statistical distributions on X and for a number of training samples which must be greater
than or equal to a minimum value depending only on p and me.

The constraint to computation complexity is not a secondary matter, in fact, we expect our
algorithms to learn efficiently in a reasonable time also when the problem is quite complex.
An exponential time could lead to computational explosions when the datasets are too large
or the optimization starting point is very far from an acceptable minimum. Moreover, it's
important to remember the so-called curse of dimensionality, which is an effect that often
happens in some models where training or prediction time is proportional (not always
linearly) to the dimensions, so when the number of features increases, the performance of
the models (that can be reasonable when the input dimensionality is small) gets
dramatically reduced. Moreover, in many cases, in order to capture the full expressivity, it's
necessary to have a very large dataset and without enough training data, the approximation
can become problematic (this is called Hughes phenomenon). For these reasons, looking for
polynomial-time algorithms is more than a simple effort, because it can determine the
success or the failure of a machine learning problem. For these reasons, in the next chapters,
we're going to introduce some techniques that can be used to efficiently reduce the
dimensionality of a dataset without a problematic loss of information.



Important Elements in Machine Learning

[ 32 ]

Statistical learning approaches
Imagine that you need to design a spam-filtering algorithm starting from this initial (over-
simplistic) classification based on two parameters:

Parameter Spam emails (X1) Regular emails (X2)

p1 - Contains > 5 blacklisted words 80 20

p2 - Message length < 20 characters 75 25

We have collected 200 email messages (X) (for simplicity, we consider p1 and p2 mutually
exclusive) and we need to find a couple of probabilistic hypotheses (expressed in terms of p1

and p2), to determine:

We also assume the conditional independence of both terms (it means that hp1 and hp2

contribute conjunctly to spam in the same way as they were alone).

For example, we could think about rules (hypotheses) like: "If there are more than five
blacklisted words" or "If the message is less than 20 characters in length" then "the
probability of spam is high" (for example, greater than 50 percent). However, without
assigning probabilities, it's difficult to generalize when the dataset changes (like in a real
world antispam filter). We also want to determine a partitioning threshold (such as green,
yellow, and red signals) to help the user in deciding what to keep and what to trash.

As the hypotheses are determined through the dataset X, we can also write (in a discrete
form):
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In this example, it's quite easy to determine the value of each term. However, in general, it's
necessary to introduce the Bayes formula (which will be discussed in Chapter 6, Naive
Bayes):

The proportionality is necessary to avoid the introduction of the marginal probability P(X),
which acts only as a normalization factor (remember that in a discrete random variable, the
sum of all possible probability outcomes must be equal to 1).

In the previous equation, the first term is called a posteriori (which comes after) probability,
because it's determined by a marginal Apriori (which comes first) probability multiplied by
a factor which is called likelihood. To understand the philosophy of such an approach, it's
useful to take a simple example: tossing a fair coin. Everybody knows that the marginal
probability of each face is equal to 0.5, but who decided that? It's a theoretical consequence
of logic and probability axioms (a good physicist would say that it's never 0.5 because of
several factors that we simply discard). After tossing the coin 100 times, we observe the
outcomes and, surprisingly, we discover that the ratio between heads and tails is slightly
different (for example, 0.46). How can we correct our estimation? The term called
likelihood measures how much our actual experiments confirm the Apriori hypothesis and
determines another probability (a posteriori) which reflects the actual situation. The
likelihood, therefore, helps us in correcting our estimation dynamically, overcoming the
problem of a fixed probability.

In Chapter 6, Naive Bayes, dedicated to naive Bayes algorithms, we're going to discuss these
topics deeply and implement a few examples with scikit-learn, however, it's useful to
introduce here two statistical learning approaches which are very diffused. Refer to Russel
S., Norvig P., Artificial Intelligence: A Modern Approach, Pearson for further information.
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MAP learning
When selecting the right hypothesis, a Bayesian approach is normally one of the best
choices, because it takes into account all the factors and, as we'll see, even if it's based on
conditional independence, such an approach works perfectly when some factors are
partially dependent. However, its complexity (in terms of probabilities) can easily grow
because all terms must always be taken into account. For example, a real coin is a very short
cylinder, so, in tossing a coin, we should also consider the probability of even. Let's say, it's
0.001. It means that we have three possible outcomes: P(head) = P(tail) = (1.0 - 0.001) / 2.0 and
P(even) = 0.001. The latter event is obviously unlikely, but in Bayesian learning it must be
considered (even if it'll be squeezed by the strength of the other terms).

An alternative is picking the most probable hypothesis in terms of a posteriori probability:

This approach is called MAP (maximum a posteriori) and it can really simplify the scenario
when some hypotheses are quite unlikely (for example, in tossing a coin, a MAP hypothesis
will discard P(even)). However, it still does have an important drawback: it depends on
Apriori probabilities (remember that maximizing the a posteriori implies considering also
the Apriori). As Russel and Norvig (Russel S., Norvig P., Artificial Intelligence: A Modern
Approach, Pearson) pointed out, this is often a delicate part of an inferential process, because
there's always a theoretical background which can drive to a particular choice and exclude
others. In order to rely only on data, it's necessary to have a different approach.

Maximum-likelihood learning
We have defined likelihood as a filtering term in the Bayes formula. In general, it has the
form of:



Important Elements in Machine Learning

[ 35 ]

Here the first term expresses the actual likelihood of a hypothesis, given a dataset X. As you
can imagine, in this formula there are no more Apriori probabilities, so, maximizing it
doesn't imply accepting a theoretical preferential hypothesis, nor considering unlikely ones.
A very common approach, known as expectation-maximization and used in many
algorithms (we're going to see an example in logistic regression), is split into two main
parts:

Determining a log-likelihood expression based on model parameters (they will be
optimized accordingly)

Maximizing it until residual error is small enough

A log-likelihood (normally called L) is a useful trick that can simplify gradient calculations.
A generic likelihood expression is:

As all parameters are inside hi, the gradient is a complex expression which isn't very
manageable. However our goal is maximizing the likelihood, but it's easier minimizing its
reciprocal:

This can be turned into a very simple expression by applying natural logarithm (which is
monotonic):
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The last term is a summation which can be easily derived and used in most of the
optimization algorithms. At the end of this process, we can find a set of parameters which
provides the maximum likelihood without any strong statement about prior distributions.
This approach can seem very technical, but its logic is really simple and intuitive. To
understand how it works, I propose a simple exercise, which is part of Gaussian mixture
technique discussed also in Russel S., Norvig P., Artificial Intelligence: A Modern Approach,
Pearson.

Let's consider 100 points drawn from a Gaussian distribution with zero mean and a
standard deviation equal to 2.0 (quasi-white noise made of independent samples):

import numpy as np

nb_samples = 100
X_data = np.random.normal(loc=0.0, scale=np.sqrt(2.0), size=nb_samples)

The plot is shown next:
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In this case, there's no need for a deep exploration (we know how they are generated),
however, after restricting the hypothesis space to the Gaussian family (the most suitable
considering only the graph), we'd like to find the best value for mean and variance. First of
all, we need to compute the log-likelihood (which is rather simple thanks to the exponential
function):

A simple Python implementation is provided next (for ease of use, there's only a single
array which contains both mean (0) and variance (1)):

def negative_log_likelihood(v):
  l = 0.0
  f1 = 1.0 / np.sqrt(2.0 * np.pi * v[1])
  f2 = 2.0 * v[1]

  for x in X_data:
    l += np.log(f1 * np.exp(-np.square(x - v[0]) / f2))

 return -l

Then we need to find its minimum (in terms of mean and variance) with any of the
available methods (gradient descent or another numerical optimization algorithm). For
example, using the scipy minimization function, we can easily get:

from scipy.optimize import minimize

>>> minimize(fun=negative_log_likelihood, x0=[0.0, 1.0])

 fun: 172.33380423827057
 hess_inv: array([[ 0.01571807,  0.02658017],
       [ 0.02658017,  0.14686427]])
      jac: array([  0.00000000e+00,  -1.90734863e-06])
  message: 'Optimization terminated successfully.'
     nfev: 52
      nit: 9
     njev: 13
   status: 0
  success: True
        x: array([ 0.04088792,  1.83822255])
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A graph of the negative log-likelihood function is plotted next. The global minimum of this
function corresponds to an optimal likelihood given a certain distribution. It doesn't mean
that the problem has been completely solved, because the first step of this algorithm is
determining an expectation, which must be always realistic. The likelihood function,
however, is quite sensitive to wrong distributions because it can easily get close to zero
when the probabilities are low. For this reason, maximum-likelihood (ML) learning is often
preferable to MAP learning, which needs Apriori distributions and can fail when they are
not selected in the most appropriate way:

This approach has been applied to a specific distribution family (which is indeed very easy
to manage), but it also works perfectly when the model is more complex. Of course, it's
always necessary to have an initial awareness about how the likelihood should be
determined because more than one feasible family can generate the same dataset. In all
these cases, Occam's razor is the best way to proceed: the simplest hypothesis should be
considered first. If it doesn't fit, an extra level of complexity can be added to our model. As
we'll see, in many situations, the easiest solution is the winning one, and increasing the
number of parameters or using a more detailed model can only add noise and a higher
possibility of overfitting.
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SciPy (h t t p s ://w w w . s c i p y . o r g ) is a set of high-end scientific and data-
oriented libraries available for Python. It includes NumPy, Pandas, and many
other useful frameworks. If you want to read more about Python scientific
computing, refer to Johansson R., Numerical Python, Apress or Landau R. H.,
Pàez M. J., Bordeianu C. C., Computational Physics. Problem Solving with Python,
Wiley-VCH.

Elements of information theory
A machine learning problem can also be analyzed in terms of information transfer or
exchange. Our dataset is composed of n features, which are considered independent (for
simplicity, even if it's often a realistic assumption) drawn from n different statistical
distributions. Therefore, there are n probability density functions pi(x) which must be
approximated through other n qi(x) functions. In any machine learning task, it's very 
important to understand how two corresponding distributions diverge and what is the
amount of information we lose when approximating the original dataset.

The most useful measure is called entropy:

This value is proportional to the uncertainty of X and it's measured in bits (if the logarithm
has another base, this unit can change too). For many purposes, a high entropy is
preferable, because it means that a certain feature contains more information. For example,
in tossing a coin (two possible outcomes), H(X) = 1 bit, but if the number of outcomes
grows, even with the same probability, H(X) also does because of a higher number of
different values and therefore increased variability. It's possible to prove that for a Gaussian
distribution (using natural logarithm):

So, the entropy is proportional to the variance, which is a measure of the amount of
information carried by a single feature. In the next chapter, we're going to discuss a method
for feature selection based on variance threshold. Gaussian distributions are very common,
so this example can be considered just as a general approach to feature filtering: low
variance implies low information level and a model could often discard all those features.
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In the following figure, there's a plot of H(X) for a Gaussian distribution expressed in nats
(which is the corresponding unit measure when using natural logarithms):

For example, if a dataset is made up of some features whose variance (here it's more
convenient talking about standard deviation) is bounded between 8 and 10 and a few with
STD < 1.5, the latter could be discarded with a limited loss in terms of information. These
concepts are very important in real-life problems when large datasets must be cleaned and
processed in an efficient way.

If we have a target probability distribution p(x), which is approximated by another
distribution q(x), a useful measure is cross-entropy between p and q (we are using the
discrete definition as our problems must be solved using numerical computations):
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If the logarithm base is 2, it measures the number of bits requested to decode an event
drawn from P when using a code optimized for Q. In many machine learning problems, we
have a source distribution and we need to train an estimator to be able to identify correctly
the class of a sample. If the error is null, P = Q and the cross-entropy is minimum
(corresponding to the entropy H(P)). However, as a null error is almost impossible when 
working with Q, we need to pay a price of H(P, Q) bits, to determine the right class starting
from a prediction. Our goal is often to minimize it, so to reduce this price under a threshold
that cannot alter the predicted output if not paid. In other words, think about a binary
output and a sigmoid function: we have a threshold of 0.5 (this is the maximum price we can
pay) to identify the correct class using a step function (0.6 -> 1, 0.1 -> 0, 0.4999 -> 0, and so
on). As we're not able to pay this price, since our classifier doesn't know the original
distribution, it's necessary to reduce the cross-entropy under a tolerable noise-robustness
threshold (which is always the smallest achievable one).

In order to understand how a machine learning approach is performing, it's also useful to
introduce a conditional entropy or the uncertainty of X given the knowledge of Y:

Through this concept, it's possible to introduce the idea of mutual information, which is the
amount of information shared by both variables and therefore, the reduction of uncertainty
about X provided by the knowledge of Y:

Intuitively, when X and Y are independent, they don't share any information. However, in
machine learning tasks, there's a very tight dependence between an original feature and its
prediction, so we want to maximize the information shared by both distributions. If the
conditional entropy is small enough (so Y is able to describe X quite well), the mutual
information gets close to the marginal entropy H(X), which measures the amount of
information we want to learn.

An interesting learning approach based on the information theory, called Minimum
Description Length (MDL), is discussed in Russel S., Norvig P., Artificial Intelligence: A
Modern Approach, Pearson, where I suggest you look for any further information about these
topics.
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Summary
In this chapter, we have introduced some main concepts about machine learning. We
started with some basic mathematical definitions, to have a clear view about data formats,
standards, and kind of functions. This notation will be adopted in all the other chapters and
it's also the most diffused in technical publications. We discussed how scikit-learn
seamlessly works with multi-class problems, and when a strategy is preferable to another.

The next step was the introduction of some fundamental theoretical concepts about
learnability. The main questions we tried to answer were: how can we decide if a problem
can be learned by an algorithm and what is the maximum precision we can achieve. PAC
learning is a generic but powerful definition that can be adopted when defining the
boundaries of an algorithm. A PAC learnable problem, in fact, is not only manageable by a
suitable algorithm but is also fast enough to be computed in polynomial time. Then we
introduced some common statistical learning concepts, in particular, MAP and maximum
likelihood learning approaches. The former tries to pick the hypothesis which maximizes
the a posteriori probability, while the latter works the likelihood, looking for the hypothesis
that best fits the data. This strategy is one of the most diffused in many machine learning
problems because it's not affected by Apriori probabilities and it's very easy to implement
in many different contexts. We also gave a physical interpretation of a loss function as an
energy function. The goal of a training algorithm is to always try to find the global
minimum point, which corresponds to the deepest valley in the error surface. At the end of
this chapter, there was a brief introduction to information theory and how we can
reinterpret our problems in terms of information gain and entropy. Every machine learning
approach should work to minimize the amount of information needed to start from
prediction and recover original (desired) outcomes.
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In the next chapter, we're going to discuss the fundamental concepts of feature engineering,
which is the first step in almost every machine learning pipeline. We're going to show how
to manage different kinds of data (numerical and categorical) and how it's possible to
reduce the dimensionality without a dramatic loss of information.



3
Feature Selection and Feature

Engineering
Feature engineering is the first step in a machine learning pipeline and involves all the
techniques adopted to clean existing datasets, increase their signal-noise ratio, and reduce
their dimensionality. Most algorithms have strong assumptions about the input data, and
their performances can be negatively affected when raw datasets are used. Moreover, the
data is seldom isotropic; there are often features that determine the general behavior of a
sample, while others that are correlated don't provide any additional pieces of information.
So, it's important to have a clear view of a dataset and know the most common algorithms
used to reduce the number of features or select only the best ones.

scikit-learn toy datasets
scikit-learn provides some built-in datasets that can be used for testing purposes. They're all
available in the package sklearn.datasets and have a common structure: the data
instance variable contains the whole input set X while target contains the labels for
classification or target values for regression. For example, considering the Boston house
pricing dataset (used for regression), we have:

from sklearn.datasets import load_boston

>>> boston = load_boston()
>>> X = boston.data
>>> Y = boston.target

>>> X.shape
(506, 13)
>>> Y.shape
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(506,)

In this case, we have 506 samples with 13 features and a single target value. In this book,
we're going to use it for regressions and the MNIST handwritten digit dataset
(load_digits()) for classification tasks. scikit-learn also provides functions for creating
dummy datasets from scratch: make_classification(), make_regression(), and
make_blobs() (particularly useful for testing cluster algorithms). They're very easy to use
and in many cases, it's the best choice to test a model without loading more complex
datasets.

Visit h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /d a t a s e t s / for further
information.

The MNIST dataset provided by scikit-learn is limited for obvious reasons.
If you want to experiment with the original one, refer to the website
managed by Y. LeCun, C. Cortes, C. Burges: h t t p ://y a n n . l e c u n . c o m /e x d

b /m n i s t /. Here you can download a full version made up of 70,000
handwritten digits already split into training and test sets.

Creating training and test sets
When a dataset is large enough, it's a good practice to split it into training and test sets; the 
former to be used for training the model and the latter to test its performances. In the
following figure, there's a schematic representation of this process:
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There are two main rules in performing such an operation:

Both datasets must reflect the original distribution
The original dataset must be randomly shuffled before the split phase in order to
avoid a correlation between consequent elements

With scikit-learn, this can be achieved using the train_test_split() function:

from sklearn.model_selection import train_test_split

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25, random_state=1000)

The parameter test_size (as well as training_size) allows specifying the percentage of
elements to put into the test/training set. In this case, the ratio is 75 percent for training and
25 percent for the test phase. Another important parameter is random_state which can
accept a NumPy RandomState generator or an integer seed. In many cases, it's important to
provide reproducibility for the experiments, so it's also necessary to avoid using different
seeds and, consequently, different random splits:

My suggestion is to always use the same number (it can also be 0 or
completely omitted), or define a global RandomState which can be passed
to all requiring functions.

from sklearn.utils import check_random_state

>>> rs = check_random_state(1000)
<mtrand.RandomState at 0x12214708>

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25, random_state=rs)

In this way, if the seed is kept equal, all experiments have to lead to the same results and
can be easily reproduced in different environments by other scientists.

For further information about NumPy random number generation, visit h t
t p s ://d o c s . s c i p y . o r g /d o c /n u m p y /r e f e r e n c e /g e n e r a t e d /n u m p y . r a n d o

m . R a n d o m S t a t e . h t m l .
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Managing categorical data
In many classification problems, the target dataset is made up of categorical labels which
cannot immediately be processed by any algorithm. An encoding is needed and scikit-learn
offers at least two valid options. Let's consider a very small dataset made of 10 categorical
samples with two features each:

import numpy as np

>>> X = np.random.uniform(0.0, 1.0, size=(10, 2))
>>> Y = np.random.choice(('Male','Female'), size=(10))
>>> X[0]
array([ 0.8236887 ,  0.11975305])
>>> Y[0]
'Male'

The first option is to use the LabelEncoder class, which adopts a dictionary-oriented
approach, associating to each category label a progressive integer number, that is an index
of an instance array called classes_:

from sklearn.preprocessing import LabelEncoder

>>> le = LabelEncoder()
>>> yt = le.fit_transform(Y)
>>> print(yt)
[0 0 0 1 0 1 1 0 0 1]

>>> le.classes_array(['Female', 'Male'], dtype='|S6')

The inverse transformation can be obtained in this simple way:

>>> output = [1, 0, 1, 1, 0, 0]
>>> decoded_output = [le.classes_[i] for i in output]
['Male', 'Female', 'Male', 'Male', 'Female', 'Female']

This approach is simple and works well in many cases, but it has a drawback: all labels are
turned into sequential numbers. A classifier which works with real values will then
consider similar numbers according to their distance, without any concern for semantics.
For this reason, it's often preferable to use so-called one-hot encoding, which binarizes the
data. For labels, it can be achieved using the LabelBinarizer class:

from sklearn.preprocessing import LabelBinarizer

>>> lb = LabelBinarizer()
>>> Yb = lb.fit_transform(Y)
array([[1],
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       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [1],
       [1]])

>>> lb.inverse_transform(Yb)
array(['Male', 'Female', 'Male', 'Male', 'Male', 'Male', 'Female', 'Male',
       'Male', 'Male'], dtype='|S6')

In this case, each categorical label is first turned into a positive integer and then
transformed into a vector where only one feature is 1 while all the others are 0. It means, for
example, that using a softmax distribution with a peak corresponding to the main class can
be easily turned into a discrete vector where the only non-null element corresponds to the
right class. For example:

import numpy as np

>>> Y = lb.fit_transform(Y)
array([[0, 1, 0, 0, 0],
       [0, 0, 0, 1, 0],
       [1, 0, 0, 0, 0]])

>>> Yp = model.predict(X[0])
array([[0.002, 0.991, 0.001, 0.005, 0.001]])

>>> Ypr = np.round(Yp)
array([[ 0.,  1.,  0.,  0.,  0.]])

>>> lb.inverse_transform(Ypr)
array(['Female'], dtype='|S6')

Another approach to categorical features can be adopted when they're structured like a list
of dictionaries (not necessarily dense, they can have values only for a few features). For
example:

data = [
   { 'feature_1': 10.0, 'feature_2': 15.0 },
   { 'feature_1': -5.0, 'feature_3': 22.0 },
   { 'feature_3': -2.0, 'feature_4': 10.0 }
]



Feature Selection and Feature Engineering

[ 49 ]

In this case, scikit-learn offers the classes DictVectorizer and FeatureHasher; they both
produce sparse matrices of real numbers that can be fed into any machine learning model.
The latter has a limited memory consumption and adopts MurmurHash 3 (read h t t p s ://e

n . w i k i p e d i a . o r g /w i k i /M u r m u r H a s h , for further information). The code for these two 
methods is shown as follows:

from sklearn.feature_extraction import DictVectorizer, FeatureHasher

>>> dv = DictVectorizer()
>>> Y_dict = dv.fit_transform(data)

>>> Y_dict.todense()
matrix([[ 10.,  15.,   0.,   0.],
        [ -5.,   0.,  22.,   0.],
        [  0.,   0.,  -2.,  10.]])

>>> dv.vocabulary_
{'feature_1': 0, 'feature_2': 1, 'feature_3': 2, 'feature_4': 3}

>>> fh = FeatureHasher()
>>> Y_hashed = fh.fit_transform(data)

>>> Y_hashed.todense()
matrix([[ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.],
        [ 0.,  0.,  0., ...,  0.,  0.,  0.]])

In both cases, I suggest you read the original scikit-learn documentation to know all
possible options and parameters.

When working with categorical features (normally converted into positive integers through
LabelEncoder), it's also possible to filter the dataset in order to apply one-hot encoding
using the OneHotEncoder class. In the following example, the first feature is a binary index
which indicates 'Male' or 'Female':

from sklearn.preprocessing import OneHotEncoder

>>> data = [
   [0, 10],
   [1, 11],
   [1, 8],
   [0, 12],
   [0, 15]
]

>>> oh = OneHotEncoder(categorical_features=[0])
>>> Y_oh = oh.fit_transform(data1)
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>>> Y_oh.todense()
matrix([[  1.,   0.,  10.],
        [  0.,   1.,  11.],
        [  0.,   1.,   8.],
        [  1.,   0.,  12.],
        [  1.,   0.,  15.]])

Considering that these approaches increase the number of values (also exponentially with
binary versions), all the classes adopt sparse matrices based on SciPy implementation. See h
t t p s ://d o c s . s c i p y . o r g /d o c /s c i p y - 0. 18. 1/r e f e r e n c e /s p a r s e . h t m l for further
information.

Managing missing features
Sometimes a dataset can contain missing features, so there are a few options that can be
taken into account:

Removing the whole line
Creating sub-model to predict those features
Using an automatic strategy to input them according to the other known values

The first option is the most drastic one and should be considered only when the dataset is
quite large, the number of missing features is high, and any prediction could be risky. The
second option is much more difficult because it's necessary to determine a supervised
strategy to train a model for each feature and, finally, to predict their value. Considering all
pros and cons, the third option is likely to be the best choice. scikit-learn offers the class
Imputer, which is responsible for filling the holes using a strategy based on the mean
(default choice), median, or frequency (the most frequent entry will be used for all the
missing ones).

The following snippet shows an example using the three approaches (the default value for a
missing feature entry is NaN. However, it's possible to use a different placeholder through
the parameter missing_values):

from sklearn.preprocessing import Imputer

>>> data = np.array([[1, np.nan, 2], [2, 3, np.nan], [-1, 4, 2]])

>>> imp = Imputer(strategy='mean')
>>> imp.fit_transform(data)
array([[ 1. ,  3.5,  2. ],
       [ 2. ,  3. ,  2. ],
       [-1. ,  4. ,  2. ]])
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>>> imp = Imputer(strategy='median')
>>> imp.fit_transform(data)
array([[ 1. ,  3.5,  2. ],
       [ 2. ,  3. ,  2. ],
       [-1. ,  4. ,  2. ]])

>>> imp = Imputer(strategy='most_frequent')
>>> imp.fit_transform(data)
array([[ 1.,  3.,  2.],
       [ 2.,  3.,  2.],
       [-1.,  4.,  2.]])

Data scaling and normalization
A generic dataset (we assume here that it is always numerical) is made up of different
values which can be drawn from different distributions, having different scales and,
sometimes, there are also outliers. A machine learning algorithm isn't naturally able to
distinguish among these various situations, and therefore, it's always preferable to
standardize datasets before processing them. A very common problem derives from having
a non-zero mean and a variance greater than one. In the following figure, there's a
comparison between a raw dataset and the same dataset scaled and centered:

This result can be achieved using the StandardScaler class:

from sklearn.preprocessing import StandardScaler

>>> ss = StandardScaler()
>>> scaled_data = ss.fit_transform(data)
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It's possible to specify if the scaling process must include both mean and standard deviation
using the parameters with_mean=True/False and with_std=True/False (by default
they're both active). If you need a more powerful scaling feature, with a superior control on
outliers and the possibility to select a quantile range, there's also the class RobustScaler.
Here are some examples with different quantiles:

from sklearn.preprocessing import RubustScaler

>>> rb1 = RobustScaler(quantile_range=(15, 85))
>>> scaled_data1 = rb1.fit_transform(data)

>>> rb1 = RobustScaler(quantile_range=(25, 75))
>>> scaled_data1 = rb1.fit_transform(data)

>>> rb2 = RobustScaler(quantile_range=(30, 60))
>>> scaled_data2 = rb2.fit_transform(data)

The results are shown in the following figures:
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Other options include MinMaxScaler and MaxAbsScaler, which scale data by removing
elements that don't belong to a given range (the former) or by considering a maximum
absolute value (the latter).

scikit-learn also provides a class for per-sample normalization, Normalizer. It can apply
max, l1 and l2 norms to each element of a dataset. In a Euclidean space, they are defined in
the following way:

An example of every normalization is shown next:

from sklearn.preprocessing import Normalizer

>>> data = np.array([1.0, 2.0])

>>> n_max = Normalizer(norm='max')
>>> n_max.fit_transform(data.reshape(1, -1))
[[ 0.5, 1. ]]

>>> n_l1 = Normalizer(norm='l1')
>>> n_l1.fit_transform(data.reshape(1, -1))
[[ 0.33333333,  0.66666667]]

>>> n_l2 = Normalizer(norm='l2')
>>> n_l2.fit_transform(data.reshape(1, -1))
[[ 0.4472136 ,  0.89442719]]
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Feature selection and filtering
An unnormalized dataset with many features contains information proportional to the
independence of all features and their variance. Let's consider a small dataset with three
features, generated with random Gaussian distributions:
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Even without further analysis, it's obvious that the central line (with the lowest variance) is
almost constant and doesn't provide any useful information. If you remember the previous
chapter, the entropy H(X) is quite small, while the other two variables carry more
information. A variance threshold is, therefore, a useful approach to remove all those 
elements whose contribution (in terms of variability and so, information) is under a
predefined level. scikit-learn provides the class VarianceThreshold that can easily solve
this problem. By applying it on the previous dataset, we get the following result:

from sklearn.feature_selection import VarianceThreshold

>>> X[0:3, :]
array([[-3.5077778 , -3.45267063,  0.9681903 ],
       [-3.82581314,  5.77984656,  1.78926338],
       [-2.62090281, -4.90597966,  0.27943565]])

>>> vt = VarianceThreshold(threshold=1.5)
>>> X_t = vt.fit_transform(X)

>>> X_t[0:3, :]
array([[-0.53478521, -2.69189452],
       [-5.33054034, -1.91730367],
       [-1.17004376,  6.32836981]])

The third feature has been completely removed because its variance is under the selected
threshold (1.5 in this case).

There are also many univariate methods that can be used in order to select the best features
according to specific criteria based on F-tests and p-values, such as chi-square or ANOVA.
However, their discussion is beyond the scope of this book and the reader can find further
information in Freedman D., Pisani R., Purves R., Statistics, Norton & Company.

Two examples of feature selection that use the classes SelectKBest (which selects the best
K high-score features) and SelectPercentile (which selects only a subset of features
belonging to a certain percentile) are shown next. It's possible to apply them both to
regression and classification datasets, being careful to select appropriate score functions:

from sklearn.datasets import load_boston, load_iris
from sklearn.feature_selection import SelectKBest, SelectPercentile, chi2,
f_regression

>>> regr_data = load_boston()
>>> regr_data.data.shape
(506L, 13L)

>>> kb_regr = SelectKBest(f_regression)
>>> X_b = kb_regr.fit_transform(regr_data.data, regr_data.target)
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>>> X_b.shape
(506L, 10L)

>>> kb_regr.scores_
array([  88.15124178,   75.2576423 ,  153.95488314,   15.97151242,
        112.59148028,  471.84673988,   83.47745922,   33.57957033,
         85.91427767,  141.76135658,  175.10554288,   63.05422911,
        601.61787111])

>>> class_data = load_iris()
>>> class_data.data.shape
(150L, 4L)

>>> perc_class = SelectPercentile(chi2, percentile=15)
>>> X_p = perc_class.fit_transform(class_data.data, class_data.target)

>>> X_p.shape
(150L, 1L)

>>> perc_class.scores_
array([  10.81782088,    3.59449902,  116.16984746,   67.24482759])

For further details about all scikit-learn score functions and their usage,
visit h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /f e a t u r e _ s e l e c t i o n . h

t m l #u n i v a r i a t e - f e a t u r e - s e l e c t i o n .

Principal component analysis
In many cases, the dimensionality of the input dataset X is high and so is the complexity of
every related machine learning algorithm. Moreover, the information is seldom spread
uniformly across all the features and, as discussed in the previous chapter, there will be
high entropy features together with low entropy ones, which, of course, don't contribute
dramatically to the final outcome. In general, if we consider a Euclidean space, we have:
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So each point is expressed using an orthonormal basis made of m linearly independent
vectors. Now, considering a dataset X, a natural question arises: is it possible to reduce m
without a drastic loss of information? Let's consider the following figure (without any
particular interpretation):

It doesn't matter which distributions generated X=(x,y), however, the variance of the
horizontal component is clearly higher than the vertical one. As discussed, it means that the
amount of information provided by the first component is higher and, for example, if the x
axis is stretched horizontally keeping the vertical one fixed, the distribution becomes similar
to a segment where the depth has lower and lower importance.
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In order to assess how much information is brought by each component, and the correlation
among them, a useful tool is the covariance matrix (if the dataset has zero mean, we can use
the correlation matrix):

C is symmetric and positive semidefinite, so all the eigenvalues are non-negative, but what's
the meaning of each value? The covariance matrix for the previous example is:

As expected, the horizontal variance is quite a bit higher than the vertical one. Moreover,
the other values are close to zero. If you remember the definition and, for simplicity,
remove the mean term, they represent the cross-correlation between couples of
components. It's obvious that in our example, X and Y are uncorrelated (they're
orthogonal), but in real-life examples, there could be features which present a residual
cross-correlation. In terms of information theory, it means that knowing Y gives us some
information about X (which we already know), so they share information which is indeed
doubled. So our goal is also to decorrelate X while trying to reduce its dimensionality.

This can be achieved considering the sorted eigenvalues of C and selecting g < m values:
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So, it's possible to project the original feature vectors into this new (sub-)space, where each
component carries a portion of total variance and where the new covariance matrix is
decorrelated to reduce useless information sharing (in terms of correlation) among different
features. In scikit-learn, there's the PCA class which can do all this in a very smooth way:

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA

>>> digits = load_digits()

A figure with a few random MNIST handwritten digits is shown as follows:
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Each image is a vector of 64 unsigned int (8 bit) numbers (0, 255), so the initial number of
components is indeed 64. However, the total amount of black pixels is often predominant
and the basic signs needed to write 10 digits are similar, so it's reasonable to assume both
high cross-correlation and a low variance on several components. Trying with 36 principal
components, we get:

>>> pca = PCA(n_components=36, whiten=True)
>>> X_pca = pca.fit_transform(digits.data / 255)

In order to improve performance, all integer values are normalized into the range [0, 1] and,
through the parameter whiten=True, the variance of each component is scaled to one. As
also the official scikit-learn documentation says, this process is particularly useful when an
isotropic distribution is needed for many algorithms to perform efficiently. It's possible to
access the explained variance ratio through the instance variable
explained_variance_ratio_, which shows which part of the total variance is carried by
each single component:

>>> pca.explained_variance_ratio_
array([ 0.14890594,  0.13618771,  0.11794594,  0.08409979,  0.05782415,
        0.0491691 ,  0.04315987,  0.03661373,  0.03353248,  0.03078806,
        0.02372341,  0.02272697,  0.01821863,  0.01773855,  0.01467101,
        0.01409716,  0.01318589,  0.01248138,  0.01017718,  0.00905617,
        0.00889538,  0.00797123,  0.00767493,  0.00722904,  0.00695889,
        0.00596081,  0.00575615,  0.00515158,  0.00489539,  0.00428887,
        0.00373606,  0.00353274,  0.00336684,  0.00328029,  0.0030832 ,
        0.00293778])

A plot for the example of MNIST digits is shown next. The left graph represents the
variance ratio while the right one is the cumulative variance. It can be immediately seen
how the first components are normally the most important ones in terms of information,
while the following ones provide details that a classifier could also discard:
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As expected, the contribution to the total variance decreases dramatically starting from the
fifth component, so it's possible to reduce the original dimensionality without an
unacceptable loss of information, which could drive an algorithm to learn wrong classes. In
the preceding graph, there are the same handwritten digits rebuilt using the first 36
components with whitening and normalization between 0 and 1. To obtain the original
images, we need to inverse-transform all new vectors and project them into the original
space:

>>> X_rebuilt = pca.inverse_transform(X_pca)

The result is shown in the following figure:
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This process can also partially denoise the original images by removing residual variance,
which is often associated with noise or unwanted contributions (almost every calligraphy
distorts some of the structural elements which are used for recognition).

I suggest the reader try different numbers of components (using the explained variance
data) and also n_components='mle', which implements an automatic selection of the best
dimensionality (Minka T.P, Automatic Choice of Dimensionality for PCA, NIPS 2000: 598-604).

scikit-learn solves the PCA problem with SVD (Singular Value
Decomposition), which can be studied in detail in Poole D., Linear Algebra,
Brooks Cole. It's possible to control the algorithm through the parameter
svd_solver, whose values are 'auto', 'full', 'arpack',
'randomized'. Arpack implements a truncated SVD. Randomized is
based on an approximate algorithm which drops many singular vectors
and can achieve very good performances also with high-dimensional
datasets where the actual number of components is sensibly smaller.

Non-negative matrix factorization
When the dataset is made up of non-negative elements, it's possible to use non-negative
matrix factorization (NNMF) instead of standard PCA. The algorithm optimizes a loss
function (alternatively on W and H) based on the Frobenius norm:

If dim(X) = n x m, then dim(W) = n x p and dim(H) = p x m with p equal to the number of
requested components (the n_components parameter), which is normally smaller than the
original dimensions n and m.
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The final reconstruction is purely additive and it has been shown that it's particularly
efficient for images or text where there are normally no non-negative elements. In the
following snippet, there's an example using the Iris dataset (which is non-negative). The
init parameter can assume different values (see the documentation) which determine how
the data matrix is initially processed. A random choice is for non-negative matrices which
are only scaled (no SVD is performed):

from sklearn.datasets import load_iris
from sklearn.decomposition import NMF

>>> iris = load_iris()
>>> iris.data.shape
(150L, 4L)

>>> nmf = NMF(n_components=3, init='random', l1_ratio=0.1)
>>> Xt = nmf.fit_transform(iris.data)

>>> nmf.reconstruction_err_
1.8819327624141866

>>> iris.data[0]
array([ 5.1,  3.5,  1.4,  0.2])
>>> Xt[0]
array([ 0.20668461,  1.09973772,  0.0098996 ])
>>> nmf.inverse_transform(Xt[0])
array([ 5.10401653,  3.49666967,  1.3965409 ,  0.20610779])

NNMF, together with other factorization methods, will be very useful for more advanced
techniques, such as recommendation systems and topic modeling.

NNMF is very sensitive to its parameters (in particular, initialization and
regularization), so I suggest reading the original documentation for
further information: h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /g e n e r a
t e d /s k l e a r n . d e c o m p o s i t i o n . N M F . h t m l .
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Sparse PCA
scikit-learn provides different PCA variants that can solve particular problems. I do suggest
reading the original documentation. However, I'd like to mention SparsePCA, which allows
exploiting the natural sparsity of data while extracting principal components. If you think
about the handwritten digits or other images that must be classified, their initial
dimensionality can be quite high (a 10x10 image has 100 features). However, applying a
standard PCA selects only the average most important features, assuming that every
sample can be rebuilt using the same components. Simplifying, this is equivalent to:

On the other hand, we can always use a limited number of components, but without the
limitation given by a dense projection matrix. This can be achieved by using sparse matrices
(or vectors), where the number of non-zero elements is quite low. In this way, each element
can be rebuilt using its specific components (in most cases, they will be always the most
important), which can include elements normally discarded by a dense PCA. The previous
expression now becomes:

Here the non-null components have been put into the first block (they don't have the same
order as the previous expression), while all the other zero terms have been separated. In
terms of linear algebra, the vectorial space now has the original dimensions. However,
using the power of sparse matrices (provided by scipy.sparse), scikit-learn can solve this
problem much more efficiently than a classical PCA.

The following snippet shows a sparse PCA with 60 components. In this context, they're
usually called atoms and the amount of sparsity can be controlled via L1-norm
regularization (higher alpha parameter values lead to more sparse results). This approach
is very common in classification algorithms and will be discussed in the next chapters:

from sklearn.decomposition import SparsePCA

>>> spca = SparsePCA(n_components=60, alpha=0.1)
>>> X_spca = spca.fit_transform(digits.data / 255)

>>> spca.components_.shape
(60L, 64L)
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For further information about SciPy sparse matrices, visit h t t p s ://d o c s . s c i p

y . o r g /d o c /s c i p y - 0. 18. 1/r e f e r e n c e /s p a r s e . h t m l .

Kernel PCA
We're going to discuss kernel methods in Chapter 7, Support Vector Machines, however, it's
useful to mention the class KernelPCA, which performs a PCA with non-linearly separable
data sets. Just to understand the logic of this approach (the mathematical formulation isn't
very simple), it's useful to consider a projection of each sample into a particular space where
the dataset becomes linearly separable. The components of this space correspond to the
first, second, ... principal components and a kernel PCA algorithm, therefore, computes the
projection of our samples onto each of them.

Let's consider a dataset made up of a circle with a blob inside:

from sklearn.datasets import make_circles

>>> Xb, Yb = make_circles(n_samples=500, factor=0.1, noise=0.05)

The graphical representation is shown in the following picture. In this case, a classic PCA
approach isn't able to capture the non-linear dependency of existing components (the
reader can verify that the projection is equivalent to the original dataset). However, looking
at the samples and using polar coordinates (therefore, a space where it's possible to project
all the points), it's easy to separate the two sets, only considering the radius:
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Considering the structure of the dataset, it's possible to investigate the behavior of a PCA
with a radial basis function kernel. As the default value for gamma is 1.0/number of features
(for now, consider this parameter as inversely proportional to the variance of a Gaussian),
we need to increase it to capture the external circle. A value of 1.0 is enough:

from sklearn.decomposition import KernelPCA

>>> kpca = KernelPCA(n_components=2, kernel='rbf',
fit_inverse_transform=True, gamma=1.0)
>>> X_kpca = kpca.fit_transform(Xb)
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The instance variable X_transformed_fit_ will contain the projection of our dataset into
the new space. Plotting it, we get:

The plot shows a separation just like expected, and it's also possible to see that the points
belonging to the central blob have a curve distribution because they are more sensitive to
the distance from the center.

Kernel PCA is a powerful instrument when we think of our dataset as made up of elements
that can be a function of components (in particular, radial-basis or polynomials) but we
aren't able to determine a linear relationship among them.
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For more information about the different kernels supported by scikit-
learn, visit h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /m e t r i c s . h t m l #l

i n e a r - k e r n e l .

Atom extraction and dictionary learning
Dictionary learning is a technique which allows rebuilding a sample starting from a sparse 
dictionary of atoms (similar to principal components). In Mairal J., Bach F., Ponce J., Sapiro
G., Online Dictionary Learning for Sparse Coding, Proceedings of the 29th International
Conference on Machine Learning, 2009 there's a description of the same online strategy
adopted by scikit-learn, which can be summarized as a double optimization problem where:

Is an input dataset and the target is to find both a dictionary D and a set of weights for each
sample:

After the training process, an input vector can be computed as:

The optimization problem (which involves both D and alpha vectors) can be expressed as
the minimization of the following loss function:

Here the parameter c controls the level of sparsity (which is proportional to the strength of
L1 normalization). This problem can be solved by alternating the least square variable until
a stable point is reached.
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In scikit-learn, we can implement such an algorithm with the class DictionaryLearning
(using the usual MNIST datasets), where n_components, as usual, determines the number
of atoms:

from sklearn.decomposition import DictionaryLearning

>>> dl = DictionaryLearning(n_components=36, fit_algorithm='lars',
transform_algorithm='lasso_lars')
>>> X_dict = dl.fit_transform(digits.data)

A plot of each atom (component) is shown in the following figure:
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This process can be very long on low-end machines. In such a case, I suggest
limiting the number of samples to 20 or 30.

References
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Summary
Feature selection is the first (and sometimes the most important) step in a machine learning
pipeline. Not all the features are useful for our purposes and some of them are expressed
using different notations, so it's often necessary to preprocess our dataset before any further
operations.

We saw how to split the data into training and test sets using a random shuffle and how to
manage missing elements. Another very important section covered the techniques used to
manage categorical data or labels, which are very common when a certain feature assumes
only a discrete set of values.

Then we analyzed the problem of dimensionality. Some datasets contain many features
which are correlated with each other, so they don't provide any new information but
increase the computational complexity and reduce the overall performances. Principal
component analysis is a method to select only a subset of features which contain the largest
amount of total variance. This approach, together with its variants, allows to decorrelate the
features and reduce the dimensionality without a drastic loss in terms of accuracy.
Dictionary learning is another technique used to extract a limited number of building blocks
from a dataset, together with the information needed to rebuild each sample. This approach
is particularly useful when the dataset is made up of different versions of similar elements
(such as images, letters, or digits).
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In the next chapter, we're going to discuss linear regression, which is the most diffused and
simplest supervised approach to predict continuous values. We'll also analyze how to
overcome some limitations and how to solve non-linear problems using the same
algorithms.



4
Linear Regression

Linear models are the simplest parametric methods and always deserve the right attention,
because many problems, even intrinsically non-linear ones, can be easily solved with these
models. As discussed previously, a regression is a prediction where the target is continuous
and its applications are several, so it's important to understand how a linear model can fit
the data, what its strengths and weaknesses are, and when it's preferable to pick an
alternative. In the last part of the chapter, we're going to discuss an interesting method to
work efficiently with non-linear data using the same models.

Linear models
Consider a dataset of real-values vectors:

Each input vector is associated with a real value yi:

A linear model is based on the assumption that it's possible to approximate the output
values through a regression process based on the rule:
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In other words, the strong assumption is that our dataset and all other unknown points lie
on a hyperplane and the maximum error is proportional to both the training quality and the
adaptability of the original dataset. One of the most common problems arises when the
dataset is clearly non-linear and other models have to be considered (such as neural
networks or kernel support vector machines).

A bidimensional example
Let's consider a small dataset built by adding some uniform noise to the points belonging to
a segment bounded between -6 and 6. The original equation is: y = x + 2 + n, where n is a
noise term.

In the following figure, there's a plot with a candidate regression function:
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As we're working on a plane, the regressor we're looking for is a function of only two
parameters:

In order to fit our model, we must find the best parameters and to do that we choose an
ordinary least squares approach. The loss function to minimize is:

With an analytic approach, in order to find the global minimum, we must impose:

So (for simplicity, it accepts a vector containing both variables):

import numpy as np

def loss(v):
   e = 0.0
   for i in range(nb_samples):
      e += np.square(v[0] + v[1]*X[i] - Y[i])
   return 0.5 * e

And the gradient can be defined as:

def gradient(v):
   g = np.zeros(shape=2)
   for i in range(nb_samples):
     g[0] += (v[0] + v[1]*X[i] - Y[i])
     g[1] += ((v[0] + v[1]*X[i] - Y[i]) * X[i])
   return g
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The optimization problem can now be solved using SciPy:

from scipy.optimize import minimize

>>> minimize(fun=loss, x0=[0.0, 0.0], jac=gradient, method='L-BFGS-B')
fun: 9.7283268345966025
 hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>
      jac: array([  7.28577538e-06,  -2.35647522e-05])
  message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
     nfev: 8
      nit: 7
   status: 0
  success: True
        x: array([ 2.00497209,  1.00822552])

As expected, the regression denoised our dataset, rebuilding the original equation: y = x + 2.

Linear regression with scikit-learn and
higher dimensionality
scikit-learn offers the class LinearRegression, which works with n-dimensional spaces.
For this purpose, we're going to use the Boston dataset:

from sklearn.datasets import load_boston

>>> boston = load_boston()

>>> boston.data.shape
(506L, 13L)
>>> boston.target.shape
(506L,)
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It has 506 samples with 13 input features and one output. In the following figure, there' a
collection of the plots of the first 12 features:

When working with datasets, it's useful to have a tabular view to
manipulate data. pandas is a perfect framework for this task, and even
though it's beyond the scope of this book, I suggest you create a data
frame with the command pandas.DataFrame(boston.data,
columns=boston.feature_names) and use Jupyter to visualize it. For
further information, refer to Heydt M., Learning pandas - Python Data
Discovery and Analysis Made Easy, Packt.
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There are different scales and outliers (which can be removed using the methods studied in
the previous chapters), so it's better to ask the model to normalize the data before
processing it. Moreover, for testing purposes, we split the original dataset into training
(90%) and test (10%) sets:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

>>> X_train, X_test, Y_train, Y_test = train_test_split(boston.data,
boston.target, test_size=0.1)

>>> lr = LinearRegression(normalize=True)
>>> lr.fit(X_train, Y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=True)

When the original data set isn't large enough, splitting it into training and test sets may
reduce the number of samples that can be used for fitting the model. k-fold cross-validation
can help in solving this problem with a different strategy. The whole dataset is split into k
folds using always k-1 folds for training and the remaining one to validate the model. K
iterations will be performed, using always a different validation fold. In the following
figure, there's an example with 3 folds/iterations:



Linear Regression

[ 78 ]

In this way, the final score can be determined as average of all values and all samples are
selected for training k-1 times.

To check the accuracy of a regression, scikit-learn provides the internal method score(X,
y) which evaluates the model on test data:

>>> lr.score(X_test, Y_test)
0.77371996006718879

So the overall accuracy is about 77%, which is an acceptable result considering the non-
linearity of the original dataset, but it can be also influenced by the subdivision made by
train_test_split (like in our case). Instead, for k-fold cross-validation, we can use the
function cross_val_score(), which works with all the classifiers. The scoring parameter
is very important because it determines which metric will be adopted for tests. As
LinearRegression works with ordinary least squares, we preferred the negative mean
squared error, which is a cumulative measure that must be evaluated according to the
actual values (it's not relative).

from sklearn.model_selection import cross_val_score

>>> scores = cross_val_score(lr, boston.data, boston.target, cv=7,
scoring='neg_mean_squared_error')
array([ -11.32601065,  -10.96365388,  -32.12770594,  -33.62294354,
        -10.55957139, -146.42926647,  -12.98538412])

>>> scores.mean()
-36.859219426420601
>>> scores.std()
45.704973900600457

Another very important metric used in regressions is called the coefficient of
determination or R2. It measures the amount of variance on the prediction which is
explained by the dataset. We define residuals, the following quantity:
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In other words, it is the difference between the sample and the prediction. So the R2 is
defined as follows:

For our purposes, R2 values close to 1 mean an almost perfect regression, while values close
to 0 (or negative) imply a bad model. Using this metric is quite easy with cross-validation:

>>> cross_val_score(lr, X, Y, cv=10, scoring='r2')
0.75

Regressor analytic expression
If we want to have an analytical expression of our model (a hyperplane),
LinearRegression offers two instance variables, intercept_ and coef_:

>>> print('y = ' + str(lr.intercept_) + ' ')
>>> for i, c in enumerate(lr.coef_):
       print(str(c) + ' * x' + str(i))

y = 38.0974166342
-0.105375005552 * x0
0.0494815380304 * x1
0.0371643549528 * x2
3.37092201039 * x3
-18.9885299511 * x4
3.73331692311 * x5
0.00111437695492 * x6
-1.55681538908 * x7
0.325992743837 * x8
-0.01252057277 * x9
-0.978221746439 * x10
0.0101679515792 * x11
-0.550117114635 * x12
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As for any other model, a prediction can be obtained through the method predict(X). As
an experiment, we can try to add some Gaussian noise to our training data and predict the
value:

>>> X = boston.data[0:10] + np.random.normal(0.0, 0.1)

>>> lr.predict(X)
array([ 29.5588731 ,  24.49601998,  30.0981552 ,  28.01864586,
        27.28870704,  24.65881135,  22.46335968,  18.79690943,
        10.53493932,  18.18093544])

>>> boston.target[0:10]
array([ 24. ,  21.6,  34.7,  33.4,  36.2,  28.7,  22.9,  27.1,  16.5,
18.9])

It's obvious that the model is not performing in an ideal way and there are many possible
reasons, the foremost being nonlinearities and the presence of outliers. However, in general,
a linear regression model is not a perfectly robust solution. In Hastie T., Tibshirani R.,
Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and, Prediction,
Springer, you can find a very detailed discussion about its strengths and weaknesses.
However, in this context, a common threat is represented by collinearities that lead to low-
rank X matrix. This determines an ill-conditioned matrix that is particularly sensitive to
noise, causing the explosion of some parameters as well. The following methods have been
studied in order to mitigate this risk and provide more robust solutions.

Ridge, Lasso, and ElasticNet
Ridge regression imposes an additional shrinkage penalty to the ordinary least squares loss
function to limit its squared L2 norm:
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In this case, X is a matrix containing all samples as columns and the term w represents the
weight vector. The additional term (through the coefficient alpha—if large it implies a
stronger regularization and smaller values) forces the loss function to disallow an infinite
growth of w, which can be caused by multicollinearity or ill-conditioning. In the following
figure, there's a representation of what happens when a Ridge penalty is applied:

The gray surface represents the loss function (here, for simplicity, we're working with only
two weights), while the circle center O is the boundary imposed by the Ridge condition.
The minimum will have smaller w values and potential explosions are avoided.
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In the following snippet, we're going to compare LinearRegression and Ridge with a
cross-validation:

from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression, Ridge

>>> diabetes = load_diabetes()

>>> lr = LinearRegression(normalize=True)
>>> rg = Ridge(0.001, normalize=True)

>>> lr_scores = cross_val_score(lr, diabetes.data, diabetes.target, cv=10)
>>> lr_scores.mean()
0.46196236195833718

>>> rg_scores = cross_val_score(rg, diabetes.data, diabetes.target, cv=10)
>>> rg_scores.mean()
0.46227174692391299

Sometimes, finding the right value for alpha (Ridge coefficient) is not so immediate. scikit-
learn provides the class RidgeCV, which allows performing an automatic grid search
(among a set and returning the best estimation):

from sklearn.linear_model import RidgeCV

>>> rg = RidgeCV(alphas=(1.0, 0.1, 0.01, 0.005, 0.0025, 0.001, 0.00025),
normalize=True)
>>> rg.fit(diabetes.data, diabetes.target)

>>> rg.alpha_
0.0050000000000000001

A Lasso regressor imposes a penalty on the L1 norm of w to determine a potentially higher
number of null coefficients:
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The sparsity is a consequence of the penalty term (the mathematical proof is non-trivial and
will be omitted).

In this case, there are vertices where a component is non-null while all the other weights are
zero. The probability of an intersection with a vertex is proportional to the dimensionality
of w and, therefore, it's normal to discover a rather sparse model after training a Lasso
regressor.

In the following snippet, the diabetes dataset is used to fit a Lasso model:

from sklearn.linear_model import Lasso

>>> ls = Lasso(alpha=0.001, normalize=True)
>>> ls_scores = cross_val_score(ls, diabetes.data, diabetes.target, cv=10)
>>> ls_scores.mean()
0.46215747851504058
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Also for Lasso, there's the possibility of running a grid search for the best alpha parameter.
The class, in this case, is LassoCV and its internal dynamics are similar to what was already
seen for Ridge. Lasso can also perform efficiently on the sparse data generated through the
scipy.sparse class, allowing for training bigger models without the need for partial
fitting:

from scipy import sparse

>>> ls = Lasso(alpha=0.001, normalize=True)
>>> ls.fit(sparse.coo_matrix(diabetes.data), diabetes.target)
Lasso(alpha=0.001, copy_X=True, fit_intercept=True, max_iter=1000,
   normalize=True, positive=False, precompute=False, random_state=None,
   selection='cyclic', tol=0.0001, warm_start=False)

When working with a huge amount of data, some models cannot fit
completely in memory, so it's impossible to train them. scikit-learn offers
some models, such as stochastic gradient descent (SGD), which work in a
way quite similar to LinearRegression with Ridge/Lasso; however,
they also implement the method partial_fit(), which also allows
continuous training through Python generators. See h t t p ://s c i k i t - l e a r
n . o r g /s t a b l e /m o d u l e s /l i n e a r _ m o d e l . h t m l #s t o c h a s t i c - g r a d i e n t - d e s

c e n t - s g d , for further details.

The last alternative is ElasticNet, which combines both Lasso and Ridge into a single model
with two penalty factors: one proportional to L1 norm and the other to L2 norm. In this
way, the resulting model will be sparse like a pure Lasso, but with the same regularization
ability as provided by Ridge. The resulting loss function is:
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The ElasticNet class provides an implementation where the alpha parameter works in
conjunction with l1_ratio (beta in the formula). The main peculiarity of ElasticNet is
avoiding a selective exclusion of correlated features, thanks to the balanced action of the L1
and L2 norms.

In the following snippet, there's an example using both the ElasticNet and
ElasticNetCV classes:

from sklearn.linear_model import ElasticNet, ElasticNetCV

>>> en = ElasticNet(alpha=0.001, l1_ratio=0.8, normalize=True)
>>> en_scores = cross_val_score(en, diabetes.data, diabetes.target, cv=10)
>>> en_scores.mean()
0.46358858847836454

>>> encv = ElasticNetCV(alphas=(0.1, 0.01, 0.005, 0.0025, 0.001),
l1_ratio=(0.1, 0.25, 0.5, 0.75, 0.8), normalize=True)
>>> encv.fit(dia.data, dia.target)
ElasticNetCV(alphas=(0.1, 0.01, 0.005, 0.0025, 0.001), copy_X=True,
cv=None,
       eps=0.001, fit_intercept=True, l1_ratio=(0.1, 0.25, 0.5, 0.75, 0.8),
       max_iter=1000, n_alphas=100, n_jobs=1, normalize=True,
       positive=False, precompute='auto', random_state=None,
       selection='cyclic', tol=0.0001, verbose=0)

>>> encv.alpha_
0.001
>>> encv.l1_ratio_
0.75
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Robust regression with random sample
consensus
A common problem with linear regressions is caused by the presence of outliers. An
ordinary least square approach will take them into account and the result (in terms of
coefficients) will be therefore biased. In the following figure, there's an example of such a
behavior:

The less sloped line represents an acceptable regression which discards the outliers, while
the other one is influenced by them. An interesting approach to avoid this problem is
offered by random sample consensus (RANSAC), which works with every regressor by
subsequent iterations, after splitting the dataset into inliers and outliers. The model is
trained only with valid samples (evaluated internally or through the callable
is_data_valid()) and all samples are re-evaluated to verify if they're still inliers or they
have become outliers. The process ends after a fixed number of iterations or when the
desired score is achieved.
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In the following snippet, there's an example of simple linear regression applied to the
dataset shown in the previous figure.

from sklearn.linear_model import LinearRegression

>>> lr = LinearRegression(normalize=True)
>>> lr.fit(X.reshape((-1, 1)), Y.reshape((-1, 1)))
>>> lr.intercept_
array([ 5.500572])
>>> lr.coef_
array([[ 2.53688672]])

As imagined, the slope is high due to the presence of outliers. The resulting regressor is y =
5.5 + 2.5x (slightly less sloped than what was shown in the figure). Now we're going to use
RANSAC with the same linear regressor:

from sklearn.linear_model import RANSACRegressor

>>> rs = RANSACRegressor(lr)
>>> rs.fit(X.reshape((-1, 1)), Y.reshape((-1, 1)))
>>> rs.estimator_.intercept_
array([ 2.03602026])
>>> es.estimator_.coef_
array([[ 0.99545348]])

In this case, the regressor is about y = 2 + x (which is the original clean dataset without
outliers).

If you want to have further information, I suggest visiting the page h t t p
://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /g e n e r a t e d /s k l e a r n . l i n e a r _ m o

d e l . R A N S A C R e g r e s s o r . h t m l . For other robust regression techniques, visit:
h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /l i n e a r _ m o d e l . h t m l #r o b u s

t n e s s - r e g r e s s i o n - o u t l i e r s - a n d - m o d e l i n g - e r r o r s .

Polynomial regression
Polynomial regression is a technique based on a trick that allows using linear models even
when the dataset has strong non-linearities. The idea is to add some extra variables
computed from the existing ones and using (in this case) only polynomial combinations:
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For example, with two variables, it's possible to extend to a second-degree problem by
transforming the initial vector (whose dimension is equal to m) into another one with higher
dimensionality (whose dimension is k > m):

In this case, the model remains externally linear, but it can capture internal non-linearities.
To show how scikit-learn implements this technique, let's consider the dataset shown in the
following figure:
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This is clearly a non-linear dataset, and any linear regression based only on the original
two-dimensional points cannot capture the dynamics. Just to try, we can train a simple
model (testing it on the same dataset):

from sklearn.linear_model import LinearRegression

>>> lr = LinearRegression(normalize=True)
>>> lr.fit(X.reshape((-1, 1)), Y.reshape((-1, 1)))
>>> lr.score(X.reshape((-1, 1)), Y.reshape((-1, 1)))
0.10888218817034558

Performances are poor, as expected. However, looking at the figure, we might suppose that
a quadratic regression could easily solve this problem. scikit-learn provides the class
PolynomialFeatures, which transforms an original set into an expanded one according to
the parameter degree:

from sklearn.preprocessing import PolynomialFeatures

>>> pf = PolynomialFeatures(degree=2)
>>> Xp = pf.fit_transform(X.reshape(-1, 1))

>>> Xp.shape
(100L, 3L)

As expected, the old x1 coordinate has been replaced by a triplet, which also contains the
quadratic and mixed terms. At this point, a linear regression model can be trained:

>>> lr.fit(Xp, Y.reshape((-1, 1)))
>>> lr.score(Xp, Y.reshape((-1, 1)))
0.99692778265941961

The score is quite higher and the only price we have paid is an increase in terms of features.
In general, this is feasible; however, if the number grows over an accepted threshold, it's
useful to try a dimensionality reduction or, as an extreme solution, to move to a non-linear
model (such as SVM-Kernel). Usually, a good approach is using the class
SelectFromModel to let scikit-learn select the best features based on their importance. In
fact, when the number of features increases, the probability that all of them have the same
importance gets lower. This is the result of mutual correlation or of the co-presence of major
and minor trends, which act like noise and don't have the strength to alter perceptibility the
hyperplane slope. Moreover, when using a polynomial expansion, some weak features (that
cannot be used for a linear separation) are substituted by their functions and so the actual
number of strong features decreases.
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In the following snippet, there's an example with the previous Boston dataset. The
threshold parameter is used to set a minimum importance level. If missing, the class will
try to maximize the efficiency by removing the highest possible number of features.

from sklearn.feature_selection import SelectFromModel

>>> boston = load_boston()

>>> pf = PolynomialFeatures(degree=2)
>>> Xp = pf.fit_transform(boston.data)
>>> Xp.shape
(506L, 105L)

>>> lr = LinearRegression(normalize=True)
>>> lr.fit(Xp, boston.target)
>>> lr.score(Xp, boston.target)
0.91795268869997404

>>> sm = SelectFromModel(lr, threshold=10)
>>> Xt = sm.fit_transform(Xp, boston.target)
>>> sm.estimator_.score(Xp, boston.target)
0.91795268869997404

>>> Xt.shape
(506L, 8L)

After selecting only the best features (with the threshold set to 10), the score remains the
same, with a consistent dimensionality reduction (only 8 features are considered important
for the prediction). If, after any other processing step, it's necessary to return to the original
dataset, it's possible to use the inverse transformation:

>>> Xo = sm.inverse_transform(Xt)
>>> Xo.shape
(506L, 105L)
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Isotonic regression
There are situations when we need to find a regressor for a dataset of non-decreasing points
which can present low-level oscillations (such as noise). A linear regression can easily
achieve a very high score (considering that the slope is about constant), but it works like a
denoiser, producing a line that can't capture the internal dynamics we'd like to model. For
these situations, scikit-learn offers the class IsotonicRegression, which produces a
piecewise interpolating function minimizing the functional:

An example (with a toy dataset) is provided next:

>>> X = np.arange(-5, 5, 0.1)
>>> Y = X + np.random.uniform(-0.5, 1, size=X.shape)

Following is a plot of the dataset. As everyone can see, it can be easily modeled by a linear
regressor, but without a high non-linear function, it is very difficult to capture the slight
(and local) modifications in the slope:



Linear Regression

[ 92 ]

The class IsotonicRegression needs to know ymin and ymax (which correspond to the
variables y0 and yn in the loss function). In this case, we impose -6 and 10:

from sklearn.isotonic import IsotonicRegression

>>> ir = IsotonicRegression(-6, 10)
>>> Yi = ir.fit_transform(X, Y)

The result is provided through three instance variables:

>>> ir.X_min_
-5.0
>>> ir.X_max_
4.8999999999999648
>>> ir.f_
<scipy.interpolate.interpolate.interp1d at 0x126edef8>

The last one, (ir.f_), is an interpolating function which can be evaluated in the domain
[xmin, xmax]. For example:

>>> ir.f_(2)
array(1.7294334618146134)

A plot of this function (the green line), together with the original data set, is shown in the
following figure:
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For further information about interpolation with SciPy, visit h t t p s ://d o c s

. s c i p y . o r g /d o c /s c i p y - 0. 18. 1/r e f e r e n c e /i n t e r p o l a t e . h t m l .
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Summary
In this chapter, we have introduced the important concepts of linear models and have
described how linear regression works. In particular, we focused on the basic model and its
main variants: Lasso, Ridge, and ElasticNet. They don't modify the internal dynamics but
work as normalizers for the weights, in order to avoid common problems when the dataset
contains unscaled samples. These penalties have specific peculiarities. While Lasso
promotes sparsity, Ridge tries to find a minimum with the constraints that the weights must
lay on a circle centered at the origin (whose radius is parametrized to increase/decrease the
normalization strength). ElasticNet is a mix of both these techniques and it tries to find a
minimum where the weights are small enough and a certain degree of sparsity is achieved.

We also discussed advanced techniques such as RANSAC, which allows coping with
outliers in a very robust way, and polynomial regression, which is a very smart way to
include virtual non-linear features into our model and continue working with them with
the same linear approach. In this way, it's possible to create another dataset, containing the
original columns together with polynomial combinations of them. This new dataset can be
used to train a linear regression model, and then it's possible to select only those features
that contributed towards achieving good performances. The last method we saw was
isotonic regression, which is particularly useful when the function to interpolate is always
not decreasing. Moreover it can capture the small oscillations that would be flattened by a
generic linear regression.

In the next chapter, we're going to discuss some linear models for classifications. In
particular, we'll focus our attention on the logistic regression and stochastic gradient
descent algorithms. Moreover, we're going to introduce some useful metrics to evaluate the
accuracy of a classification system, and a powerful technique to automatically find the best
hyperparameters.
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5
Logistic Regression

This chapter begins by analyzing linear classification problems, with particular focus on
logistic regression (despite its name, it's a classification algorithm) and stochastic gradient
descent approaches. Even if these strategies appear too simple, they're still the main choices
in many classification tasks. Speaking of which, it's useful to remember a very important
philosophical principle: Occam's razor. In our context, it states that the first choice must
always be the simplest and only if it doesn't fit, it's necessary to move on to more complex
models. In the second part of the chapter, we're going to discuss some common metrics
useful to evaluate a classification task. They are not limited to linear models, so we use
them when talking about different strategies as well.
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Linear classification
Let's consider a generic linear classification problem with two classes. In the following
figure, there's an example:
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Our goal is to find an optimal hyperplane, which separates the two classes. In multi-class
problems, the strategy one-vs-all is normally adopted, so the discussion can be focused only
on binary classifications. Suppose we have the following dataset:

This dataset is associated with the following target set:

We can now define a weight vector made of m continuous components:

We can also define the quantity z:

If x is a variable, z is the value determined by the hyperplane equation. Therefore, if the set
of coefficients w that has been determined is correct, it happens that:

Now we must find a way to optimize w, in order to reduce the classification error. If such a
combination exists (with a certain error threshold), we say that our problem is linearly
separable. On the other hand, when it's impossible to find a linear classifier, the problem is
called non-linearly separable. A very simple but famous example is given by the logical
operator XOR:
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As you can see, any line will always include a wrong sample. Hence, in order to solve this
problem, it is necessary to involve non-linear techniques. However, in many real-life cases,
we use linear techniques (which are often simpler and faster) for non-linear problems too,
accepting a tolerable misclassification error.

Logistic regression
Even if called regression, this is a classification method which is based on the probability for
a sample to belong to a class. As our probabilities must be continuous in R and bounded
between (0, 1), it's necessary to introduce a threshold function to filter the term z. The name
logistic comes from the decision to use the sigmoid (or logistic) function:
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A partial plot of this function is shown in the following figure:

As you can see, the function intersects x=0 in the ordinate 0.5, and y<0.5 for x<0 and y>0.5 for
x>0. Moreover, its domain is R and it has two asymptotes at 0 and 1. So, we can define the
probability for a sample to belong to a class (from now on, we'll call them 0 and 1) as:

At this point, finding the optimal parameters is equivalent to maximizing the log-likelihood
given the output class:
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Therefore, the optimization problem can be expressed, using the indicator notation, as the
minimization of the loss function:

If y=0, the first term becomes null and the second one becomes log(1-x), which is the log-
probability of the class 0. On the other hand, if y=1, the second term is 0 and the first one
represents the log-probability of x. In this way, both cases are embedded in a single
expression. In terms of information theory, it means minimizing the cross-entropy between
a target distribution and an approximated one:

In particular, if log2 is adopted, the functional expresses the number of extra bits requested
to encode the original distribution with the predicted one. It's obvious that when J(w) = 0,
the two distributions are equal. Therefore, minimizing the cross-entropy is an elegant way
to optimize the prediction error when the target distributions are categorical.

Implementation and optimizations
scikit-learn implements the LogisticRegression class, which can solve this problem
using optimized algorithms. Let's consider a toy dataset made of 500 samples:
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The dots belong to the class 0, while the triangles belong to the class 1. In order to
immediately test the accuracy of our classification, it's useful to split the dataset into
training and test sets:

from sklearn.model_selection import train_test_split

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25)
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Now we can train the model using the default parameters:

from sklearn.linear_model import LogisticRegression

>>> lr = LogisticRegression()
>>> lr.fit(X_train, Y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

>>> lr.score(X_test, Y_test)
0.95199999999999996

It's also possible to check the quality through a cross-validation (like for linear regression):

from sklearn.model_selection import cross_val_score

>>> cross_val_score(lr, X, Y, scoring='accuracy', cv=10)
array([ 0.96078431,  0.92156863,  0.96      ,  0.98      ,  0.96      ,
        0.98      ,  0.96      ,  0.96      ,  0.91836735,  0.97959184])

The classification task has been successful without any further action (confirmed also by the
cross-validation) and it's also possible to check the resulting hyperplane parameters:

>>> lr.intercept_
array([-0.64154943])

>>> lr.coef_
array([[ 0.34417875,  3.89362924]])

In the following figure, there's a representation of this hyperplane (a line), where it's
possible to see how the classification works and what samples are misclassified.
Considering the local density of the two blocks, it's easy to see that the misclassifications
happened for outliers and for some borderline samples. The latter can be controlled by
adjusting the hyperparameters, even if a trade-off is often necessary. For example, if we
want to include the four right dots on the separation line, this could exclude some elements
in the right part. Later on, we're going to see how to find the optimal solution. However,
when a linear classifier can easily find a separating hyperplane (even with a few outliers),
we can say that the problem is linearly modelable; otherwise, more sophisticated non-linear
techniques must be taken into account.
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Just like for linear regression, it's possible to impose norm conditions on the weights. In
particular, the actual functional becomes:
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The behavior is the same as explained in the previous chapter. Both produce a shrinkage,
but L1 forces sparsity. This can be controlled using the parameters penalty (whose values
can be L1 or L2) and C, which is the inverse regularization factor (1/alpha), so bigger values
reduce the strength, while smaller ones (in particular less than 1) force the weights to move
closer to the origin. Moreover, L1 will prefer vertexes (where all but one components are
null), so it's a good idea to apply SelectFromModel in order to optimize the actual features
after shrinkage.

Stochastic gradient descent algorithms
After discussing the basics of logistic regression, it's useful to introduce the
SGDClassifier class , which implements a very famous algorithm that can be applied to
several different loss functions. The idea behind stochastic gradient descent is iterating a
weight update based on the gradient of loss function:

However, instead of considering the whole dataset, the update procedure is applied on
batches randomly extracted from it. In the preceding formula, L is the loss function we want
to minimize (as discussed in Chapter 2, Important Elements in Machine Learning) and gamma
(eta0 in scikit-learn) is the learning rate, a parameter that can be constant or decayed while
the learning process proceeds. The learning_rate parameter can be also left with its
default value (optimal), which is computed internally according to the regularization
factor.

The process should end when the weights stop modifying or their variation keeps itself
under a selected threshold. The scikit-learn implementation uses the n_iter parameter to
define the number of desired iterations.
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There are many possible loss functions, but in this chapter, we consider only log and
perceptron. Some of the other ones will be discussed in the next chapters. The former
implements a logistic regression, while the latter (which is also available as the autonomous
class Perceptron) is the simplest neural network, composed of a single layer of weights w,
a fixed constant called bias, and a binary output function:

The output function (which classifies in two classes) is:

The differences between a Perceptron and a LogisticRegression are the output
function (sign versus sigmoid) and the training model (with the loss function). A
perceptron, in fact, is normally trained by minimizing the mean square distance between
the actual value and prediction:

Just like any other linear classifier, a perceptron is not able to solve nonlinear problems;
hence, our example will be generated using the built-in function make_classification:

from sklearn.datasets import make_classification

>>> nb_samples = 500
>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0, n_clusters_per_class=1)
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In this way, we can generate 500 samples split into two classes:
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This problem, under a determined precision threshold, can be linearly solved, so our
expectations are equivalent for both Perceptron and LogisticRegression. In the latter
case, the training strategy is focused on maximizing the likelihood of a probability
distribution. Considering the dataset, the probability of a red sample to belong to class 0
must be greater than 0.5 (it's equal to 0.5 when z = 0, so when the point lays on the
separating hyperplane) and vice versa. On the other hand, a perceptron will adjust the
hyperplane so that the dot product between a sample and the weights would be positive or
negative, according to the class. In the following figure, there's a geometrical representation
of a perceptron (where the bias is 0):
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The weight vector is orthogonal to the separating hyperplane, so that the discrimination can
happen only considering the sign of the dot product. An example of stochastic gradient
descent with perceptron loss (without L1/L2 constraints) is shown as follows:

from sklearn.linear_model import SGDClassifier

>>> sgd = SGDClassifier(loss='perceptron', learning_rate='optimal',
n_iter=10)
>>> cross_val_score(sgd, X, Y, scoring='accuracy', cv=10).mean()
0.98595918367346935

The same result can be obtained by directly using the Perceptron class:

from sklearn.linear_model import Perceptron

>>> perc = Perceptron(n_iter=10)
>>> cross_val_score(perc, X, Y, scoring='accuracy', cv=10).mean()
0.98195918367346935

Finding the optimal hyperparameters
through grid search
Finding the best hyperparameters (called this because they influence the parameters
learned during the training phase) is not always easy and there are seldom good methods to
start from. The personal experience (a fundamental element) must be aided by an efficient
tool such as GridSearchCV, which automates the training process of different models and
provides the user with optimal values using cross-validation.

As an example, we show how to use it to find the best penalty and strength factors for a
linear regression with the Iris toy dataset:

import multiprocessing

from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV

>>> iris = load_iris()

>>> param_grid = [
   {
      'penalty': [ 'l1', 'l2' ],
      'C': [ 0.5, 1.0, 1.5, 1.8, 2.0, 2.5]
   }
]
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>>> gs = GridSearchCV(estimator=LogisticRegression(),
param_grid=param_grid,
   scoring='accuracy', cv=10, n_jobs=multiprocessing.cpu_count())

>>> gs.fit(iris.data, iris.target)
GridSearchCV(cv=10, error_score='raise',
       estimator=LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'penalty': ['l1', 'l2'], 'C': [0.1, 0.2, 0.4, 0.5, 1.0,
1.5, 1.8, 2.0, 2.5]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
LogisticRegression(C=1.5, class_weight=None, dual=False,
fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

>>> cross_val_score(gs.best_estimator_, iris.data, iris.target,
scoring='accuracy', cv=10).mean()
0.96666666666666679

It's possible to insert into the param dictionary any parameter supported by the model with
a list of values. GridSearchCV will process in parallel and return the best estimator
(through the instance variable best_estimator_, which is an instance of the same
classifier specified through the parameter estimator).

When working with parallel algorithms, scikit-learn provides the n_jobs
parameter, which allows us to specify how many threads must be used.
Setting n_jobs=multiprocessing.cpu_count() is useful to exploit all
CPU cores available on the current machine.
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In the next example, we're going to find the best parameters of an SGDClassifier trained
with perceptron loss. The dataset is plotted in the following figure:

import multiprocessing

from sklearn.model_selection import GridSearchCV

>>> param_grid = [
   {
       'penalty': [ 'l1', 'l2', 'elasticnet' ],
       'alpha': [ 1e-5, 1e-4, 5e-4, 1e-3, 2.3e-3, 5e-3, 1e-2],
       'l1_ratio': [0.01, 0.05, 0.1, 0.15, 0.25, 0.35, 0.5, 0.75, 0.8]
   }
]
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>>> sgd = SGDClassifier(loss='perceptron', learning_rate='optimal')
>>> gs = GridSearchCV(estimator=sgd, param_grid=param_grid,
scoring='accuracy', cv=10, n_jobs=multiprocessing.cpu_count())

>>> gs.fit(X, Y)
GridSearchCV(cv=10, error_score='raise',
       estimator=SGDClassifier(alpha=0.0001, average=False,
class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='perceptron', n_iter=5, n_jobs=1,
       penalty='l2', power_t=0.5, random_state=None, shuffle=True,
       verbose=0, warm_start=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'penalty': ['l1', 'l2', 'elasticnet'], 'alpha': [1e-05,
0.0001, 0.0005, 0.001, 0.0023, 0.005, 0.01], 'l1_ratio': [0.01, 0.05, 0.1,
0.15, 0.25, 0.35, 0.5, 0.75, 0.8]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_score_
0.89400000000000002

>>> gs.best_estimator_
SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.1, learning_rate='optimal',
       loss='perceptron', n_iter=5, n_jobs=1, penalty='elasticnet',
       power_t=0.5, random_state=None, shuffle=True, verbose=0,
       warm_start=False)

Classification metrics
A classification task can be evaluated in many different ways to achieve specific objectives.
Of course, the most important metric is the accuracy, often expressed as:

In scikit-learn, it can be assessed using the built-in accuracy_score() function:

from sklearn.metrics import accuracy_score

>>> accuracy_score(Y_test, lr.predict(X_test))
0.94399999999999995
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Another very common approach is based on zero-one loss function, which we saw in
Chapter 2, Important Elements in Machine Learning, which is defined as the normalized
average of L0/1 (where 1 is assigned to misclassifications) over all samples. In the following
example, we show a normalized score (if it's close to 0, it's better) and then the same
unnormalized value (which is the actual number of misclassifications):

from sklearn.metrics import zero_one_loss

>>> zero_one_loss(Y_test, lr.predict(X_test))
0.05600000000000005

>>> zero_one_loss(Y_test, lr.predict(X_test), normalize=False)
7L

A similar but opposite metric is the Jaccard similarity coefficient, defined as:

This index measures the similarity and is bounded between 0 (worst performances) and 1
(best performances). In the former case, the intersection is null, while in the latter, the
intersection and union are equal because there are no misclassifications. In scikit-learn, the
implementation is:

from sklearn.metrics import jaccard_similarity_score

>>> jaccard_similarity_score(Y_test, lr.predict(X_test))
0.94399999999999995



Logistic Regression

[ 112 ]

These measures provide a good insight into our classification algorithms. However, in
many cases, it's necessary to be able to differentiate between different kinds of
misclassifications (we're considering the binary case with the conventional notation: 0-
negative, 1-positive), because the relative weight is quite different. For this reason, we
introduce the following definitions:

True positive: A positive sample correctly classified
False positive: A negative sample classified as positive
True negative: A negative sample correctly classified
False negative: A positive sample classified as negative

At a glance, false positive and false negative can be considered as similar errors, but think
about a medical prediction: while a false positive can be easily discovered with further tests,
a false negative is often neglected, with repercussions following the consequences of this
action. For this reason, it's useful to introduce the concept of a confusion matrix:
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In scikit-learn, it's possible to build a confusion matrix using a built-in function. Let's
consider a generic logistic regression on a dataset X with labels Y:

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25)
>>> lr = LogisticRegression()
>>> lr.fit(X_train, Y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

Now we can compute our confusion matrix and immediately see how the classifier is
working:

from sklearn.metrics import confusion_matrix

>>> cm = confusion_matrix(y_true=Y_test, y_pred=lr.predict(X_test))
cm[::-1, ::-1]
[[50  5]
 [ 2 68]]

The last operation is needed because scikit-learn adopts an inverse axle. However, in many
books, the confusion matrix has true values on the main diagonal, so I preferred to invert
the axle.

In order to avoid mistakes, I suggest you visit the page at h t t p ://s c i k i t -
l e a r n . o r g /s t a b l e /m o d u l e s /g e n e r a t e d /s k l e a r n . m e t r i c s . c o n f u s i o n _ m

a t r i x . h t m l , and check for true/false positive/negative position.

So we have five false negatives and two false positives. If needed, a further analysis can
allow for the detection of the misclassifications to decide how to treat them (for example, if
their variance overcomes a predefined threshold, it's possible to consider them as outliers
and remove them).

Another useful direct measure is:
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This is directly connected with the ability to capture the features that determine the
positiveness of a sample, to avoid the misclassification as negative. In scikit-learn, the
implementation is:

from sklearn.metrics import precision_score

>>> precision_score(Y_test, lr.predict(X_test))
0.96153846153846156

If you don't flip the confusion matrix, but want to get the same measures,
it's necessary to add the pos_label=0 parameter to all metric score
functions.

The ability to detect true positive samples among all the potential positives can be assessed
using another measure:

The scikit-learn implementation is:

from sklearn.metrics import recall_score

>>> recall_score(Y_test, lr.predict(X_test))
0.90909090909090906

It's not surprising that we have a 90 percent recall with 96 percent precision, because the
number of false negatives (which impact recall) is proportionally higher than the number of
false positives (which impact precision). A weighted harmonic mean between precision and
recall is provided by:
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A beta value equal to 1 determines the so-called F1 score, which is a perfect balance between
the two measures. A beta less than 1 gives more importance to precision and a value greater
than 1 gives more importance to recall. The following snippet shows how to implement it
with scikit-learn:

from sklearn.metrics import fbeta_score

>>> fbeta_score(Y_test, lr.predict(X_test), beta=1)
0.93457943925233655

>>> fbeta_score(Y_test, lr.predict(X_test), beta=0.75)
0.94197437829691033

>>> fbeta_score(Y_test, lr.predict(X_test), beta=1.25)
0.92886270956048933

For F1 score, scikit-learn provides the function f1_score(), which is
equivalent to fbeta_score() with beta=1.

The highest score is achieved by giving more importance to precision (which is higher),
while the least one corresponds to a recall predominance. FBeta is hence useful to have a
compact picture of the accuracy as a trade-off between high precision and a limited number
of false negatives.

ROC curve
The ROC curve (or receiver operating characteristics) is a valuable tool to compare different
classifiers that can assign a score to their predictions. In general, this score can be 
interpreted as a probability, so it's bounded between 0 and 1. The plane is structured like in
the following figure:



Logistic Regression

[ 116 ]

The x axis represents the increasing false positive rate (also known as specificity), while the
y axis represents the true positive rate (also known as sensitivity). The dashed oblique line 
represents a perfectly random classifier, so all the curves below this threshold perform
worse than a random choice, while the ones above it show better performances. Of course,
the best classifier has an ROC curve split into the segments [0, 0] - [0, 1] and [0, 1] - [1, 1],
and our goal is to find algorithms whose performances should be as close as possible to this
limit. To show how to create a ROC curve with scikit-learn, we're going to train a model to
determine the scores for the predictions (this can be achieved using the
decision_function() or predict_proba() methods):

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25)

>>> lr = LogisticRegression()
>>> lr.fit(X_train, Y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

>>> Y_scores = lr.decision_function(X_test)
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Now we can compute the ROC curve:

from sklearn.metrics import roc_curve

>>> fpr, tpr, thresholds = roc_curve(Y_test, Y_scores)

The output is made up of the increasing true and false positive rates and the decreasing
thresholds (which isn't normally used for plotting the curve). Before proceeding, it's also
useful to compute the area under the curve (AUC), whose value is bounded between 0
(worst performances) and 1 (best performances), with a perfectly random value
corresponding to 0.5:

from sklearn.metrics import auc

>>> auc(fpr, tpr)
0.96961038961038959

We already know that our performances are rather good because the AUC is close to 1.
Now we can plot the ROC curve using matplotlib. As this book is not dedicated to this
powerful framework, I'm going to use a snippet that can be found in several examples:

import matplotlib.pyplot as plt

>>> plt.figure(figsize=(8, 8))
>>> plt.plot(fpr, tpr, color='red', label='Logistic regression (AUC: %.2f)'
% auc(fpr, tpr))
>>> plt.plot([0, 1], [0, 1], color='blue', linestyle='--')
>>> plt.xlim([0.0, 1.0])
>>> plt.ylim([0.0, 1.01])
>>> plt.title('ROC Curve')
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.legend(loc="lower right")
>>> plt.show()
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The resulting ROC curve is the following plot:

As confirmed by the AUC, our ROC curve shows very good performance. In later chapters,
we're going to use the ROC curve to visually compare different algorithms. As an exercise,
you can try different parameters of the same model and plot all the ROC curves, to
immediately understand which setting is preferable.

I suggest visiting h t t p ://m a t p l o t l i b . o r g , for further information and
tutorials. Moreover, an extraordinary tool is Jupyter (h t t p ://j u p y t e r . o r g

), which allows working with interactive notebooks, where you can
immediately try your code and visualize in-line plots.
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Summary
A linear model classifies samples using separating hyperplanes; hence, a problem is linearly
separable if it's possible to find a linear model whose accuracy overcomes a predetermined
threshold. Logistic regression is one of most famous linear classifiers, based on the principle
of maximizing the probability of a sample belonging to the right class. Stochastic gradient
descent classifiers are a more generic family of algorithms, determined by the different loss
function that is adopted. SGD allows partial fitting, particularly when the amount of data is
too huge to be loaded in memory. A perceptron is a particular instance of SGD,
representing a linear neural network that cannot solve the XOR problem (for this reason,
multi-layer perceptrons became the first choice for non-linear classification). However, in
general, its performance is comparable to a logistic regression model.

All classifier performances must be measured using different approaches, in order to be
able to optimize their parameters or to change them when the results don't meet our
requirements. We discussed different metrics and, in particular, the ROC curve, which
graphically shows how the different classifiers are performing.

In the next chapter, we're going to discuss naive Bayes classifiers, which are another very
famous and powerful family of algorithms. Thanks to this simple approach, it's possible to
build spam filtering systems and solve apparently complex problems using only
probabilities and the quality of results. Even after decades, it's still superior or comparable
to much more complex solutions.



6
Naive Bayes

Naive Bayes are a family of powerful and easy-to-train classifiers that determine the
probability of an outcome given a set of conditions using Bayes' theorem. In other words,
the conditional probabilities are inverted, so that the query can be expressed as a function of
measurable quantities. The approach is simple, and the adjective "naive" has been attributed
not because these algorithms are limited or less efficient, but because of a fundamental
assumption about the causal factors that we're going to discuss. Naive Bayes are multi-
purpose classifiers and it's easy to find their application in many different contexts;
however, their performance is particularly good in all those situations where the probability
of a class is determined by the probabilities of some causal factors. A good example is
natural language processing, where a piece of text can be considered as a particular instance
of a dictionary and the relative frequencies of all terms provide enough information to infer
a belonging class. We're going to discuss these concepts in later chapters. In this one, our
examples will be always generic to let the reader understand how to apply naive Bayes in
various contexts.

Bayes' theorem
Let's consider two probabilistic events A and B. We can correlate the marginal probabilities
P(A) and P(B) with the conditional probabilities P(A|B) and P(B|A) using the product rule:
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Considering that the intersection is commutative, the first members are equal; so we can
derive Bayes' theorem:

This formula has very deep philosophical implications and it's a fundamental element of
statistical learning. First of all, let's consider the marginal probability P(A); this is normally a
value that determines how probable a target event is, such as P(Spam) or P(Rain). As there
are no other elements, this kind of probability is called Apriori, because it's often 
determined by mathematical considerations or simply by a frequency count. For example,
imagine we want to implement a very simple spam filter and we've collected 100 emails.
We know that 30 are spam and 70 are regular. So we can say that P(Spam) = 0.3.

However, we'd like to evaluate using some criteria (for simplicity, let's consider a single
one), for example, email text is shorter than 50 characters. Therefore, our query becomes:

The first term is similar to P(Spam) because it's the probability of spam given a certain
condition. For this reason, it's called a posteriori (in other words, it's a probability that we
can estimate after knowing some additional elements). On the right-hand side, we need to
calculate the missing values, but it's simple. Let's suppose that 35 emails have text shorter
than 50 characters, so P(Text < 50 chars) = 0.35. Looking only into our spam folder, we
discover that only 25 spam emails have short text, so that P(Text < 50 chars|Spam) = 25/30 =
0.83. The result is:

So, after receiving a very short email, there is a 71% probability that it's spam. Now, we can
understand the role of P(Text < 50 chars|Spam); as we have actual data, we can measure how
probable is our hypothesis given the query. In other words, we have defined a likelihood
(compare this with logistic regression), which is a weight between the Apriori probability
and the a posteriori one (the term in the denominator is less important because it works as a
normalizing factor):
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The normalization factor is often represented by the Greek letter alpha, so the formula
becomes:

The last step is considering the case when there are more concurrent conditions (this is
more realistic in real-life problems):

A common assumption is called conditional independence (in other words, the effects
produced by every cause are independent of each other) and this allows us to write a
simplified expression:

Naive Bayes classifiers
A naive Bayes classifier is called so because it's based on a naive condition, which implies
the conditional independence of causes. This can seem very difficult to accept in many
contexts where the probability of a particular feature is strictly correlated to another one.
For example, in spam filtering, a text shorter than 50 characters can increase the probability
of the presence of an image, or if the domain has been already blacklisted for sending the
same spam emails to million users, it's likely to find particular keywords. In other words,
the presence of a cause isn't normally independent from the presence of other ones.
However, in Zhang H., The Optimality of Naive Bayes, AAAI 1, no. 2 (2004): 3, the author
showed that under particular conditions (not so rare to happen), different dependencies
clears one another, and a naive Bayes classifier succeeds in achieving very high
performances even if its naiveness is violated.

Let's consider a dataset:
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Every feature vector, for simplicity, will be represented as:

We need also a target dataset:

Here, each y can belong to one of P different classes. Considering Bayes' theorem under
conditional independence, we can write:

The values of the marginal Apriori probability P(y) and of the conditional probabilities
P(xi|y) is obtained through a frequency count; therefore, given an input vector x, the
predicted class is the one for which the a posteriori probability is maximum.

Naive Bayes in scikit-learn
scikit-learn implements three naive Bayes variants based on the same number of different
probabilistic distributions: Bernoulli, multinomial, and Gaussian. The first one is a binary
distribution, useful when a feature can be present or absent. The second one is a discrete
distribution and is used whenever a feature must be represented by a whole number (for
example, in natural language processing, it can be the frequency of a term), while the third
is a continuous distribution characterized by its mean and variance.

Bernoulli naive Bayes
If X is random variable and is Bernoulli-distributed, it can assume only two values (for
simplicity, let's call them 0 and 1) and their probability is:
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To try this algorithm with scikit-learn, we're going to generate a dummy dataset. Bernoulli
naive Bayes expects binary feature vectors; however, the class BernoulliNB has a
binarize parameter, which allows us to specify a threshold that will be used internally to
transform the features:

from sklearn.datasets import make_classification

>>> nb_samples = 300
>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0)

We have generated the bidimensional dataset shown in the following figure:
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We have decided to use 0.0 as a binary threshold, so each point can be characterized by the
quadrant where it's located. Of course, this is a rational choice for our dataset, but Bernoulli
naive Bayes is envisaged for binary feature vectors or continuous values, which can be
precisely split with a predefined threshold:

from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import train_test_split

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25)

>>> bnb = BernoulliNB(binarize=0.0)
>>> bnb.fit(X_train, Y_train)
>>> bnb.score(X_test, Y_test)
0.85333333333333339

The score is rather good, but if we want to understand how the binary classifier worked, it's
useful to see how the data has been internally binarized:
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Now, checking the naive Bayes predictions, we obtain:

>>> data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> bnb.predict(data)
array([0, 0, 1, 1])

This is exactly what we expected.

Multinomial naive Bayes
A multinomial distribution is useful to model feature vectors where each value represents,
for example, the number of occurrences of a term or its relative frequency. If the feature
vectors have n elements and each of them can assume k different values with probability pk,
then:

The conditional probabilities P(xi|y) are computed with a frequency count (which
corresponds to applying a maximum likelihood approach), but in this case, it's important to
consider the alpha parameter (called Laplace smoothing factor). Its default value is 1.0 and
it prevents the model from setting null probabilities when the frequency is zero. It's possible
to assign all non-negative values; however, larger values will assign higher probabilities to
the missing features and this choice could alter the stability of the model. In our example,
we're going to consider the default value of 1.0.

For our purposes, we're going to use DictVectorizer, already analyzed in Chapter 2 -
Important Elements in Machine Learning. There are automatic instruments to compute
the frequencies of terms, but we're going to discuss them later. Let's consider only two
records: the first one representing a city, and the second one, the countryside. Our
dictionary contains hypothetical frequencies, as if the terms were extracted from a text
description:

from sklearn.feature_extraction import DictVectorizer

>>> data = [
   {'house': 100, 'street': 50, 'shop': 25, 'car': 100, 'tree': 20},
   {'house': 5, 'street': 5, 'shop': 0, 'car': 10, 'tree': 500, 'river': 1}
]
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>>> dv = DictVectorizer(sparse=False)
>>> X = dv.fit_transform(data)
>>> Y = np.array([1, 0])

>>> X
array([[ 100.,  100.,    0.,   25.,   50.,   20.],
       [  10.,    5.,    1.,    0.,    5.,  500.]])

Note that the term 'river' is missing from the first set, so it's useful to keep alpha equal to
1.0 to give it a small probability. The output classes are 1 for city and 0 for the countryside.
Now we can train a MultinomialNB instance:

from sklearn.naive_bayes import MultinomialNB

>>> mnb = MultinomialNB()
>>> mnb.fit(X, Y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

To test the model, we create a dummy city with a river and a dummy countryside place
without any river:

>>> test_data = data = [
   {'house': 80, 'street': 20, 'shop': 15, 'car': 70, 'tree': 10, 'river':
1},
   {'house': 10, 'street': 5, 'shop': 1, 'car': 8, 'tree': 300, 'river': 0}
]

>>> mnb.predict(dv.fit_transform(test_data))
array([1, 0])

As expected, the prediction is correct. Later on, when discussing some elements of natural
language processing, we're going to use multinomial naive Bayes for text classification with
larger corpora. Even if a multinomial distribution is based on the number of occurrences, it
can be used successfully with frequencies or more complex functions.
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Gaussian naive Bayes
Gaussian naive Bayes is useful when working with continuous values whose probabilities
can be modeled using a Gaussian distribution:

The conditional probabilities P(xi|y) are also Gaussian distributed; therefore, it's necessary
to estimate the mean and variance of each of them using the maximum likelihood approach.
This quite easy; in fact, considering the property of a Gaussian, we get:

Here, the k index refers to the samples in our dataset and P(xi|y) is a Gaussian itself. By
minimizing the inverse of this expression (in Russel S., Norvig P., Artificial Intelligence: A
Modern Approach, Pearson, there's a complete analytical explanation), we get the mean and
variance for each Gaussian associated with P(xi|y), and the model is hence trained.

As an example, we compare Gaussian naive Bayes with logistic regression using the ROC
curves. The dataset has 300 samples with two features. Each sample belongs to a single
class:

from sklearn.datasets import make_classification

>>> nb_samples = 300
>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0)
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A plot of the dataset is shown in the following figure:

Now we can train both models and generate the ROC curves (the Y scores for naive Bayes
are obtained through the predict_proba method):

from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25)

>>> gnb = GaussianNB()
>>> gnb.fit(X_train, Y_train)
>>> Y_gnb_score = gnb.predict_proba(X_test)

>>> lr = LogisticRegression()
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>>> lr.fit(X_train, Y_train)
>>> Y_lr_score = lr.decision_function(X_test)

>>> fpr_gnb, tpr_gnb, thresholds_gnb = roc_curve(Y_test, Y_gnb_score[:, 1])
>>> fpr_lr, tpr_lr, thresholds_lr = roc_curve(Y_test, Y_lr_score)

The resulting ROC curves (generated in the same way shown in the previous chapter) are
shown in the following figure:
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Naive Bayes' performance is slightly better than logistic regression; however, the two
classifiers have similar accuracy and Area Under the Curve (AUC). It's interesting to 
compare the performances of Gaussian and multinomial naive Bayes with the MNIST digit
dataset. Each sample (belonging to 10 classes) is an 8 x 8 image encoded as an unsigned
integer (0-255); therefore, even if each feature doesn't represent an actual count, it can be
considered as a sort of magnitude or frequency:

from sklearn.datasets import load_digits
from sklearn.model_selection import cross_val_score

>>> digits = load_digits()

>>> gnb = GaussianNB()
>>> mnb = MultinomialNB()

>>> cross_val_score(gnb, digits.data, digits.target, scoring='accuracy',
cv=10).mean()
0.81035375835678214

>>> cross_val_score(mnb, digits.data, digits.target, scoring='accuracy',
cv=10).mean()
0.88193962163008377

Multinomial naive Bayes performs better than the Gaussian variant and the result is not
really surprising. In fact, each sample can be thought of as a feature vector derived from a
dictionary of 64 symbols. The value can be the count of each occurrence, so a multinomial
distribution can better fit the data, while a Gaussian is slightly more limited by its mean and
variance.
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Summary
In this chapter, we exposed the generic naive Bayes approach, starting from the Bayes'
theorem and its intrinsic philosophy. The naiveness of such algorithms is due to the choice
to assume all the causes to be conditional independent. This means that each contribution is
the same in every combination and the presence of a specific cause cannot alter the
probability of the other ones. This is not so often realistic; however, under some
assumptions, it's possible to show that internal dependencies clear each other so that the
resulting probability appears unaffected by their relations.

scikit-learn provides three naive Bayes implementations: Bernoulli, multinomial and
Gaussian. The only difference between them is in the probability distribution adopted. The
first one is a binary algorithm, particularly useful when a feature can be present or not.
Multinomial assumes having feature vectors, where each element represents the number of
times it appears (or, very often, its frequency). This technique is very efficient in natural
language processing or whenever the samples are composed starting from a common
dictionary. Gaussian, instead, is based on a continuous distribution and it's suitable for
more generic classification tasks.

In the next chapter, we're going to introduce a new classification technique called support
vector machines. These algorithms are very powerful for solving both linear and non-linear
problems. They're often the first choice for more complex scenarios because, despite their
efficiency, the internal dynamics are very simple and they can be trained in a very short
time.



7
Support Vector Machines

In this chapter, we're going to introduce another approach to classification using a family of
algorithms called support vector machines. They can work with both linear and non-linear
scenarios, allowing high performance in many different contexts. Together with neural
networks, SVMs probably represent the best choice for many tasks where it's not easy to
find out a good separating hyperplane. For example, for a long time, SVMs were the best
choice for MNIST dataset classification, thanks to the fact that they can capture very high
non-linear dynamics using a mathematical trick, without complex modifications in the
algorithm. In the first part, we're going to discuss the basics of linear SVM, which then will
be used for their non-linear extensions. We'll also discuss some techniques to control the
number of parameters and, at the end, the application of support vector algorithms to
regression problems.

Linear support vector machines
Let's consider a dataset of feature vectors we want to classify:

For simplicity, we assume it as a binary classification (in all the other cases, it's possible to
use automatically the one-versus-all strategy) and we set our class labels as -1 and 1:
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Our goal is to find the best separating hyperplane, for which the equation is:

In the following figure, there's a bidimensional representation of such a hyperplane:

In this way, our classifier can be written as:
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In a realistic scenario, the two classes are normally separated by a margin with two
boundaries where a few elements lie. Those elements are called support vectors. For a more
generic mathematical expression, it's preferable to renormalize our dataset so that the
support vectors will lie on two hyperplanes with equations:

In the following figure, there's an example with two support vectors. The dashed line is the
original separating hyperplane:

Our goal is to maximize the distance between these two boundary hyperplanes so as to
reduce the probability of misclassification (which is higher when the distance is short, and
there aren't two well-defined blobs as in the previous figure).
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Considering that the boundaries are parallel, the distance between them is defined by the
length of the segment perpendicular to both and connecting two points:

Considering the points as vectors, therefore, we have:

Now, considering the boundary hyperplane equations, we get:
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The first term of the last part is equal to -1, so we solve for t:

The distance between x1 and x2 is the length of the segment t; hence we get:

Now, considering all points of our dataset, we can impose the following constraint:

This is guaranteed by using -1, 1 as class labels and boundary margins. The equality is true
only for the support vectors, while for all the other points it will greater than 1. It's
important to consider that the model doesn't take into account vectors beyond this margin.
In many cases, this can yield a very robust model, but in many datasets this can also be a
strong limitation. In the next paragraph, we're going to use a trick to avoid this rigidness
while keeping the same optimization technique.
At this point, we can define the function to minimize in order to train a support vector
machine:

This can be further simplified (by removing the square root from the norm) in the following
quadratic programming problem:
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scikit-learn implementation
In order to allow the model to have a more flexible separating hyperplane, all scikit-learn
implementations are based on a simple variant that includes so-called slack variables in the
function to minimize:

In this case, the constraints become:

The introduction of the slack variables allows us to create a flexible margin so that some
vectors belonging to a class can also be found in the opposite part of the hyperspace and can
be included in the model training. The strength of this flexibility can be set using the
parameter C. Small values (close to zero) bring about very hard margins, while values
greater than or equal to 1 allow more and more flexibility (also increasing the
misclassification rate). The right choice of C is not immediate, but the best value can be
found automatically by using a grid search as seen in the previous chapters. In our
examples, we keep the default value of 1.

Linear classification
Our first example is based on a linear SVM, as described in the previous section. We start by
creating a dummy dataset with 500 vectors subdivided into two classes:

from sklearn.datasets import make_classification

>>> nb_samples = 500
>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0, n_clusters_per_class=1)

In the following figure, there's a plot of our dataset. Notice that some points overlap the two
main blobs. For this reason, a positive C value is needed to allow the model to capture a
more complex dynamic.
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scikit-learn provides the SVC class, which is a very efficient implementation that can be used
in most cases. We're going to use it together with cross-validation to validate performance:

from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score

>>> svc = SVC(kernel='linear')
>>> cross_val_score(svc, X, Y, scoring='accuracy', cv=10).mean()
0.93191356542617032



Support Vector Machines

[ 140 ]

The kernel parameter must be set to 'linear' in this example. In the next section, we're
going to discuss how it works and how it can improve the SVM's performance dramatically
in non-linear scenarios. As expected, the accuracy is comparable to a logistic regression, as
this model tries to find an optimal linear separator. After training a model, it's possible to
get an array of support vectors, through the instance variable called support_vectors_. A
plot of them, for our example, is shown in the following figure:

As it's possible to see, they are placed in a strip along the separating line. The effect of C and
the slack variables determined a movable margin that partially captured the existing
overlap. Of course, it's impossible to separate the sets in a perfect way with a linear
classifier and, on the other hand, most real-life problems are non-linear; for this reason, it's a
necessary further step.
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Kernel-based classification
When working with non-linear problems, it's useful to transform the original vectors by 
projecting them into a higher dimensional space where they can be linearly separated. We
saw a similar approach when we discussed polynomial regression. SVMs also adopt the
same approach, even if there's now a complexity problem that we need to overcome. Our
mathematical formulation becomes:

Every feature vector is now filtered by a non-linear function that can completely reshape the
scenario. However, the introduction of such a function increased the computational
complexity in a way that could apparently discourage this approach. To understand what
has happened, it's necessary to express the quadratic problem using Lagrange multipliers.
The entire procedure is beyond the scope of this book (in Nocedal J., Wright S. J., Numerical
Optimization, Springer, you can find a complete and formal description of quadratic
programming problems); however, the final formulation is:

Therefore it's necessary to compute the following for every couple of vectors:

And this procedure can be a bottleneck, unacceptable for large problems. However, it's now
that the so-called kernel trick takes place. There are particular functions (called kernels)
that have the following property:
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In other words, the value of the kernel for two feature vectors is the product of the two
projected vectors. With this trick, the computational complexity remains almost the same,
but we can benefit from the power of non-linear projections even in a very large number of
dimensions.

Excluding the linear kernel, which is a simple product, scikit-learn supports three different
kernels that can solve many real-life problems.

Radial Basis Function
The RBF kernel is the default value for SVC and is based on the function:

The gamma parameter determines the amplitude of the function, which is not influenced by
the direction but only by the distance.

Polynomial kernel
The polynomial kernel is based on the function:

The exponent c is specified through the parameter degree, while the constant term r is
called coef0. This function can easily expand the dimensionality with a large number of
support variables and overcome very non-linear problems; however, the requirements in
terms of resources are normally higher. Considering that a non-linear function can often be
approximated quite well for a bounded area (by adopting polynomials), it's not surprising
that many complex problems become easily solvable using this kernel.
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Sigmoid kernel
The sigmoid kernel is based on this function:

The constant term r is specified through the parameter coef0.

Custom kernels
Normally, built-in kernels can efficiently solve most real-life problems; however scikit-learn
allows us to create custom kernels as normal Python functions:

import numpy as np

>>> def custom_kernel(x1, x2):
       return np.square(np.dot(x1, x2) + 1)

The function can be passed to SVC through the kernel parameter, which can assume fixed
string values ('linear', 'rbf', 'poly' and 'sigmoid') or a callable (such as
kernel=custom_kernel).

Non-linear examples
To show the power of kernel SVMs, we're going to solve two problems. The first one is
simpler but purely non-linear and the dataset is generated through the make_circles()
built-in function:

from sklearn.datasets import make_circles

>>> nb_samples = 500
>>> X, Y = make_circles(n_samples=nb_samples, noise=0.1)
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A plot of this dataset is shown in the following figure:

As it's possible to see, a linear classifier can never separate the two sets and every 
approximation will contain on average 50% misclassifications. A logistic regression example
is shown here:

from sklearn.linear_model import LogisticRegression

>>> lr = LogisticRegression()
>>> cross_val_score(lr, X, Y, scoring='accuracy', cv=10).mean()
0.438
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As expected, the accuracy is below 50% and no other optimizations can increase it
dramatically. Let's consider, instead, a grid search with an SVM and different kernels
(keeping the default values of each one):

import multiprocessing
from sklearn.model_selection import GridSearchCV

>>> param_grid = [
    {
        'kernel': ['linear', 'rbf', 'poly', 'sigmoid'],
        'C': [ 0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5, 3.0 ]
    }
]

>>> gs = GridSearchCV(estimator=SVC(), param_grid=param_grid,
                  scoring='accuracy', cv=10,
n_jobs=multiprocessing.cpu_count())

>>> gs.fit(X, Y)
GridSearchCV(cv=10, error_score='raise',
       estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'kernel': ['linear', 'rbf', 'poly', 'sigmoid'], 'C':
[0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5, 3.0]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
SVC(C=2.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> gs.best_score_
0.87

As expected from the geometry of our dataset, the best kernel is a radial basis function,
which yields 87% accuracy. Further refinements on gamma could slightly increase this value,
but as there is a partial overlap between the two subsets, it's very difficult to achieve an
accuracy close to 100%. However, our goal is not to overfit our model; it is to guarantee an
appropriate level of generalization. So, considering the shape, a limited number of
misclassifications is acceptable to ensure that the model captures sub-oscillations in the
boundary surface.
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Another interesting example is provided by the MNIST handwritten digit dataset. We have
already seen it and classified it using linear models. Now we can try to find the best kernel
with an SVM:

from sklearn.datasets import load_digits

>>> digits = load_digits()

>>> param_grid = [
    {
        'kernel': ['linear', 'rbf', 'poly', 'sigmoid'],
        'C': [ 0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5, 3.0 ]
    }
]

>>> gs = GridSearchCV(estimator=SVC(), param_grid=param_grid,
                  scoring='accuracy', cv=10,
n_jobs=multiprocessing.cpu_count())

>>> gs.fit(digits.data, digits.target)
GridSearchCV(cv=10, error_score='raise',
       estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'kernel': ['linear', 'rbf', 'poly', 'sigmoid'], 'C':
[0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5, 3.0]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='poly',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> gs.best_score_
0.97885364496382865

Hence the best classifier (with almost 98% accuracy) is based on a polynomial kernel and a
very low C value. This means that a non-linear transformation with very hard margins can
easily capture the dynamics of all digits. Indeed, SVMs (with various internal alternatives)
have always shown excellent performance with this dataset and their usage can easily be
extended to similar problems.
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Another interesting example is based on the Olivetti face dataset, which is not part of scikit-
learn but can be automatically downloaded and set up using a built-in function called
fetch_olivetti_faces():

from sklearn.datasets import fetch_olivetti_faces

>>> faces = fetch_olivetti_faces(data_home='/ML/faces/')

Through the data_home parameter, it is possible to specify in which local folder the dataset
must be placed. A subset of samples is shown in the following figure:
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There are 40 different people and each of them is represented with 10 pictures of 64 x 64
pixels. The number of classes (40) is not high, but considering the similarity of many photos,
a good classifier should be able to capture some specific anatomical details. Performing a
grid search with non-linear kernels, we get:

>>> param_grid = [
 {
   'kernel': ['rbf', 'poly'],
   'C': [ 0.1, 0.5, 1.0, 1.5 ],
   'degree': [2, 3, 4, 5],
   'gamma': [0.001, 0.01, 0.1, 0.5]
 }
]

>>> gs = GridSearchCV(estimator=SVC(), param_grid=param_grid,
scoring='accuracy', cv=8,  n_jobs=multiprocessing.cpu_count())
>>> gs.fit(faces.data, faces.target)
GridSearchCV(cv=8, error_score='raise',
       estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'kernel': ['rbf', 'poly'], 'C': [0.1, 0.5, 1.0, 1.5],
'gamma': [0.001, 0.01, 0.1, 0.5], 'degree': [2, 3, 4, 5]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=2, gamma=0.1, kernel='poly',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

So the best estimator is polynomial-based with degree=2, and the corresponding accuracy
is:

>>> gs.best_score_
0.96999999999999997

This confirms the ability of SVM to capture non-linear dynamics even with simple kernels
that can be computed in a very limited amount of time. It would be interesting for the
reader to try different parameter combinations or preprocess the data and apply principal
component analysis to reduce its dimensionality.
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Controlled support vector machines
With real datasets, SVM can extract a very large number of support vectors to increase
accuracy, and that can slow down the whole process. To allow finding out a trade-off
between precision and number of support vectors, scikit-learn provides an implementation
called NuSVC, where the parameter nu (bounded between 0—not included—and 1) can be
used to control at the same time the number of support vectors (greater values will increase
their number) and training errors (lower values reduce the fraction of errors). Let's consider
an example with a linear kernel and a simple dataset. In the following figure, there's a
scatter plot of our set:

Let's start checking the number of support vectors for a standard SVM:

>>> svc = SVC(kernel='linear')
>>> svc.fit(X, Y)
>>> svc.support_vectors_.shape
(242L, 2L)
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So the model has found 242 support vectors. Let's now try to optimize this number using
cross-validation. The default value is 0.5, which is an acceptable trade-off:

from sklearn.svm import NuSVC

>>> nusvc = NuSVC(kernel='linear', nu=0.5)
>>> nusvc.fit(X, Y)
>>> nusvc.support_vectors_.shape
(251L, 2L)

>>> cross_val_score(nusvc, X, Y, scoring='accuracy', cv=10).mean()
0.80633213285314143

As expected, the behavior is similar to a standard SVC. Let's now reduce the value of nu:

>>> nusvc = NuSVC(kernel='linear', nu=0.15)
>>> nusvc.fit(X, Y)
>>> nusvc.support_vectors_.shape
(78L, 2L)

>>> cross_val_score(nusvc, X, Y, scoring='accuracy', cv=10).mean()
0.67584393757503003

In this case, the number of support vectors is less than before and also the accuracy has been
affected by this choice. Instead of trying different values, we can look for the best choice
with a grid search:

import numpy as np

>>> param_grid = [
    {
        'nu': np.arange(0.05, 1.0, 0.05)
    }
]

>>> gs = GridSearchCV(estimator=NuSVC(kernel='linear'),
param_grid=param_grid,
                  scoring='accuracy', cv=10,
n_jobs=multiprocessing.cpu_count())
>>> gs.fit(X, Y)
GridSearchCV(cv=10, error_score='raise',
       estimator=NuSVC(cache_size=200, class_weight=None, coef0=0.0,
   decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
   max_iter=-1, nu=0.5, probability=False, random_state=None,
   shrinking=True, tol=0.001, verbose=False),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'nu': array([ 0.05,  0.1 ,  0.15,  0.2 ,  0.25,  0.3 ,
0.35,  0.4 ,  0.45,
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        0.5 ,  0.55,  0.6 ,  0.65,  0.7 ,  0.75,  0.8 ,  0.85,  0.9 ,
0.95])}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
NuSVC(cache_size=200, class_weight=None, coef0=0.0,
   decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
   max_iter=-1, nu=0.5, probability=False, random_state=None,
   shrinking=True, tol=0.001, verbose=False)

>>> gs.best_score_
0.80600000000000005

>>> gs.best_estimator_.support_vectors_.shape
(251L, 2L)

Therefore, in this case as well, the default value of 0.5 yielded the most accurate results.
Normally, this approach works quite well, but when it's necessary to reduce the number of
support vectors, it can be a good starting point for progressively reducing the value of nu
until the result is acceptable.

Support vector regression
scikit-learn provides a support vector regressor based on a very simple variant of the
algorithm already described (see the original documentation for further information). The
real power of this approach resides in the usage of non-linear kernels (in particular,
polynomials); however, the user is advised to evaluate the degree progressively because the
complexity can grow rapidly, together with the training time.

For our example, I've created a dummy dataset based on a second-order noisy function:

>>> nb_samples = 50

>>> X = np.arange(-nb_samples, nb_samples, 1)
>>> Y = np.zeros(shape=(2 * nb_samples,))

>>> for x in X:
       Y[int(x)+nb_samples] = np.power(x*6, 2.0) / 1e4 +
np.random.uniform(-2, 2)
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The dataset in plotted in the following figure:

In order to avoid a very long training process, the model is evaluated with degree set to 2.
The epsilon parameter allows us to specify a soft margin for predictions; if a predicted value
is contained in the ball centered on the target value and the radius is equal to epsilon, no
penalty is applied to the function to be minimized. The default value is 0.1:

from sklearn.svm import SVR

>>> svr = SVR(kernel='poly', degree=2, C=1.5, epsilon=0.5)
>>> cross_val_score(svr, X.reshape((nb_samples*2, 1)), Y,
scoring='neg_mean_squared_error', cv=10).mean()
-1.4641683636397234
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Summary
In this chapter, we discussed how a support vector machine works in both linear and non-
linear scenarios, starting from the basic mathematical formulation. The main concept is to
find the hyperplane that maximizes the distance between the classes by using a limited
number of samples (called support vectors) that are closest to the separation margin.

We saw how to transform a non-linear problem using kernel functions, which allow
remapping of the original space to a another high-dimensional one where the problem
becomes linearly separable. We also saw how to control the number of support vectors and
how to use SVMs for regression problems.

In the next chapter, we're going to introduce another classification method called decision
trees, which is the last one explained in this book.



8
Decision Trees and Ensemble

Learning
In this chapter, we're going to discuss binary decision trees and ensemble methods. Even if
they're probably not the most common methods for classification, they offer a good level of
simplicity and can be adopted in many tasks that don't require a high level of complexity.
They're also quite useful when it's necessary to show how a decision process works because
they are based on a structure that can be shown easily in presentations and described step
by step.

Ensemble methods are a powerful alternative to complex algorithms because they try to
exploit the statistical concept of majority vote. Many weak learners can be trained to capture
different elements and make their own predictions, which are not globally optimal, but
using a sufficient number of elements, it's statistically probable that a majority will evaluate
correctly. In particular, we're going to discuss random forests of decision trees and some
boosting methods that are slightly different algorithms that can optimize the learning
process by focusing on misclassified samples or by continuously minimizing a target loss
function.
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Binary decision trees
A binary decision tree is a structure based on a sequential decision process. Starting from
the root, a feature is evaluated and one of the two branches is selected. This procedure is
repeated until a final leaf is reached, which normally represents the classification target
we’re looking for. Considering other algorithms, decision trees seem to be simpler in their
dynamics; however, if the dataset is splittable while keeping an internal balance, the overall
process is intuitive and rather fast in its predictions. Moreover, decision trees can work
efficiently with unnormalized datasets because their internal structure is not influenced by
the values assumed by each feature. In the following figure, there are plots of an
unnormalized bidimensional dataset and the cross-validation scores obtained using a
logistic regression and a decision tree:

The decision tree always achieves a score close to 1.0, while the logistic regression has an
average slightly greater than 0.6. However, without proper limitations, a decision tree could
potentially grow until a single sample (or a very low number) is present in every node. This
situation drives to overfit the model, and the tree becomes unable to generalize correctly.
Using a consistent test set or cross-validation can help in avoiding this problem; however,
in the section dedicated to scikit-learn implementation, we're going to discuss how to limit
the growth of the tree.
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Binary decisions
Let's consider an input dataset X:

Every vector is made up of m features, so each of them can be a good candidate to create a
node based on the (feature, threshold) tuple:

According to the feature and the threshold, the structure of the tree will change. Intuitively,
we should pick the feature that best separates our data in other words, a perfect separating
feature will be present only in a node and the two subsequent branches won't be based on it
anymore. In real problems, this is often impossible, so it's necessary to find the feature that
minimizes the number of following decision steps.
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For example, let's consider a class of students where all males have dark hair and all
females have blonde hair, while both subsets have samples of different sizes. If our task is to
determine the composition of the class, we can start with the following subdivision:

However, the block Dark color? will contain both males and females (which are the targets
we want to classify). This concept is expressed using the term purity (or, more often, its
opposite concept, impurity). An ideal scenario is based on nodes where the impurity is null
so that all subsequent decisions will be taken only on the remaining features. In our
example, we can simply start from the color block:
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The two resulting sets are now pure according to the color feature, and this can be enough
for our task. If we need further details, such as hair length, other nodes must be added; their
impurity won't be null because we know that there are, for example, both male and female
students with long hair.

More formally, suppose we define the selection tuple as:

Here, the first element is the index of the feature we want to use to split our dataset at a
certain node (it will be the entire dataset only at the beginning; after each step, the number
of samples decreases), while the second is the threshold that determines left and right
branches. The choice of the best threshold is a fundamental element because it determines
the structure of the tree and, therefore, its performance. The goal is to reduce the residual
impurity in the least number of splits so as to have a very short decision path between the
sample data and the classification result.
We can also define a total impurity measure by considering the two branches:

Here, D is the whole dataset at the selected node, Dleft and Dright are the resulting subsets (by
applying the selection tuple), and the I are impurity measures.

Impurity measures
To define the most used impurity measures, we need to consider the total number of target
classes:

In a certain node j, we can define the probability p(i|j)where i is an index [1, n] associated
with each class. In other words, according to a frequentist approach, this value is the ratio
between the number of samples belonging to class i and the total number of samples
belonging to the selected node.
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Gini impurity index
The Gini impurity index is defined as:

Here, the sum is always extended to all classes. This is a very common measure and it's
used as a default value by scikit-learn. Given a sample, the Gini impurity measures the
probability of a misclassification if a label is randomly chosen using the probability
distribution of the branch. The index reaches its minimum (0.0) when all the samples of a
node are classified into a single category.

Cross-entropy impurity index
The cross-entropy measure is defined as:

This measure is based on information theory, and assumes null values only when samples
belonging to a single class are present in a split, while it is maximum when there's a
uniform distribution among classes (which is one of the worst cases in decision trees
because it means that there are still many decision steps until the final classification). This
index is very similar to the Gini impurity, even though, more formally, the cross-entropy
allows you to select the split that minimizes the uncertainty about the classification, while
the Gini impurity minimizes the probability of misclassification.

In Chapter 2, Important Elements in Machine Learning, we defined the concept of mutual
information I(X; Y) = H(X) - H(X|Y) as the amount of information shared by both variables,
thereby reducing the uncertainty about X provided by the knowledge of Y. We can use this
to define the information gain provided by a split:
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When growing a tree, we start by selecting the split that provides the highest information
gain and proceed until one of the following conditions is verified:

All nodes are pure
The information gain is null
The maximum depth has been reached

Misclassification impurity index
The misclassification impurity is the simplest index, defined as:

In terms of quality performance, this index is not the best choice because it's not particularly
sensitive to different probability distributions (which can easily drive the selection to a
subdivision using Gini or cross-entropy indexes).

Feature importance
When growing a decision tree with a multidimensional dataset, it can be useful to evaluate
the importance of each feature in predicting the output values. In Chapter 3, Feature
Selection and Feature Engineering, we discussed some methods to reduce the dimensionality
of a dataset by selecting only the most significant features. Decision trees offer a different
approach based on the impurity reduction determined by every single feature. In particular,
considering a feature xi, its importance can be determined as:

The sum is extended to all nodes where xi is used, and Nk is the number of samples reaching
the node k. Therefore, the importance is a weighted sum of all impurity reductions
computed considering only the nodes where the feature is used to split them. If the Gini
impurity index is adopted, this measure is also called Gini importance.
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Decision tree classification with scikit-learn
scikit-learn contains the DecisionTreeClassifier class, which can train a binary
decision tree with Gini and cross-entropy impurity measures. In our example, let's consider
a dataset with three features and three classes:

from sklearn.datasets import make_classification

>>> nb_samples = 500
>>> X, Y = make_classification(n_samples=nb_samples, n_features=3,
n_informative=3, n_redundant=0, n_classes=3, n_clusters_per_class=1)

Let's first consider a classification with default Gini impurity:

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score

>>> dt = DecisionTreeClassifier()
>>> print(cross_val_score(dt, X, Y, scoring='accuracy', cv=10).mean())
0.970

A very interesting feature is given by the possibility of exporting the tree in Graphviz
format and converting it into a PDF.

Graphviz is a free tool that can be downloaded from h t t p ://w w w . g r a p h v i

z . o r g .

To export a trained tree, it is necessary to use the built-in function export_graphviz():

from sklearn.tree import export_graphviz

>>> dt.fit(X, Y)
>>> with open('dt.dot', 'w') as df:
      df = export_graphviz(dt, out_file=df,
                           feature_names=['A','B','C'],
                           class_names=['C1', 'C2', 'C3'])

In this case, we have used A, B, and C as feature names and C1, C2, and C3 as class names.
Once the file has been created, it's possible converting to PDF using the command-line tool:

>>> <Graphviz Home>bindot -Tpdf dt.dot -o dt.pdf
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The graph for our example is rather large, so in the following feature you can see only a part
of a branch:

As you can see, there are two kinds of nodes:

Nonterminal, which contains the splitting tuple (as feature <= threshold) and a
positive impurity measure
Terminal, where the impurity measure is null and a final target class is present

In both cases, you can always check the number of samples. This kind of graph is very
useful in understanding how many decision steps are needed. Unfortunately, even if the
process is quite simple, the dataset structure can lead to very complex trees, while other
methods can immediately find out the most appropriate class. Of course, not all features
have the same importance. If we consider the root of the tree and the first nodes, we find
features that separate a lot of samples; therefore, their importance must be higher than that
of all terminal nodes, where the residual number of samples is minimum. In scikit-learn, it's
possible to assess the Gini importance of each feature after training a model:

>>> dt.feature_importances_
array([ 0.12066952,  0.12532507,  0.0577379 ,  0.14402762,  0.14382398,
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        0.12418921,  0.14638565,  0.13784106])

>>> np.argsort(dt.feature_importances_)
array([2, 0, 5, 1, 7, 4, 3, 6], dtype=int64)

The following figure shows a plot of the importances:

The most important features are 6, 3, 4, and 7, while feature 2, for example, separates a very
small number of samples, and can be considered noninformative for the classification task.

In terms of efficiency, a tree can also be pruned using the max_depth parameter; however,
it's not always so simple to understand which value is the best (grid search can help in this
task). On the other hand, it's easier to decide what the maximum number of features to
consider at each split should be. The parameter max_features can be used for this
purpose:

If it's a number, the value is directly taken into account at each split
If it's 'auto' or 'sqrt', the square root of the number of features will be
adopted
If it's 'log2', the logarithm (base 2) will be used
If it's 'None', all the features will be used (this is the default value)
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In general, when the number of total features is not too high, the default value is the best
choice, although it's useful to introduce a small compression (via sqrt or log2) when too
many features can interfere among themselves, reducing the efficiency. Another parameter
useful for controlling both performance and efficiency is min_samples_split, which
specifies the minimum number of samples to consider for a split. Some examples are shown
in the following snippet:

>>> cross_val_score(DecisionTreeClassifier(), X, Y, scoring='accuracy',
cv=10).mean()
0.77308070807080698

>>> cross_val_score(DecisionTreeClassifier(max_features='auto'), X, Y,
scoring='accuracy', cv=10).mean()
0.76410071007100711

>>> cross_val_score(DecisionTreeClassifier(min_samples_split=100), X, Y,
scoring='accuracy', cv=10).mean()
0.72999969996999692

As already explained, finding the best parameters is generally a difficult task, and the best
way to carry it out is to perform a grid search while including all the values that could affect
the accuracy.

Using logistic regression on the previous set (only for comparison), we get:

from sklearn.linear_model import LogisticRegression

>>> lr = LogisticRegression()
>>> cross_val_score(lr, X, Y, scoring='accuracy', cv=10).mean()
0.9053368347338937

So the score is higher, as expected. However, the original dataset was quite simple, and
based on the concept of having a single cluster per class. This allows a simpler and more
precise linear separation. If we consider a slightly different scenario with more variables
and a more complex structure (which is hard to capture by a linear classifier), we can
compare an ROC curve for both linear regression and decision trees:

>>> nb_samples = 1000
>>> X, Y = make_classification(n_samples=nb_samples, n_features=8,
n_informative=6, n_redundant=2,     n_classes=2, n_clusters_per_class=4)
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The resulting ROC curve is shown in the following figure:

Using a grid search with the most common parameters on the MNIST digits dataset, we can
get:

from sklearn.model_selection import GridSearchCV

param_grid = [
 {
   'criterion': ['gini', 'entropy'],
   'max_features': ['auto', 'log2', None],
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   'min_samples_split': [ 2, 10, 25, 100, 200 ],
   'max_depth': [5, 10, 15, None]
 }
]

>>> gs = GridSearchCV(estimator=DecisionTreeClassifier(),
param_grid=param_grid,
 scoring='accuracy', cv=10, n_jobs=multiprocessing.cpu_count())

>>> gs.fit(digits.data, digits.target)
GridSearchCV(cv=10, error_score='raise',
       estimator=DecisionTreeClassifier(class_weight=None,
criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_split=1e-07, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best'),
       fit_params={}, iid=True, n_jobs=8,
       param_grid=[{'max_features': ['auto', 'log2', None],
'min_samples_split': [2, 10, 25, 100, 200], 'criterion': ['gini',
'entropy'], 'max_depth': [5, 10, 15, None]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='accuracy', verbose=0)

>>> gs.best_estimator_
DecisionTreeClassifier(class_weight=None, criterion='entropy',
max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_split=1e-07, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best')

>>> gs.best_score_
0.8380634390651085

In this case, the element that impacted accuracy the most is the minimum number of
samples to consider for a split. This is reasonable, considering the structure of this dataset
and the need to have many branches to capture even small changes.
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Ensemble learning
Until now, we have trained models on single instances, iterating an algorithm in order to
minimize a target loss function. This approach is based on so-called strong learners, or
methods that are optimized to solve a specific problem by looking for the best possible
solution. Another approach is based on a set of weak learners that can be trained in parallel
or sequentially (with slight modifications on the parameters) and used as an ensemble
based on a majority vote or the averaging of results. These methods can be classified into
two main categories:

Bagged (or Bootstrap) trees: In this case, the ensemble is built completely. The 
training process is based on a random selection of the splits and the predictions
are based on a majority vote. Random forests are an example of bagged tree
ensembles.
Boosted trees: The ensemble is built sequentially, focusing on the samples that
have been previously misclassified. Examples of boosted trees are AdaBoost and 
gradient tree boosting.

Random forests
A random forest is a set of decision trees built on random samples with a different policy
for splitting a node: Instead of looking for the best choice, in such a model, a random subset
of features (for each tree) is used, trying to find the threshold that best separates the data.
As a result, there will be many trees trained in a weaker way and each of them will produce
a different prediction.

There are two ways to interpret these results; the more common approach is based on a
majority vote (the most voted class will be considered correct). However, scikit-learn
implements an algorithm based on averaging the results, which yields very accurate
predictions. Even if they are theoretically different, the probabilistic average of a trained
random forest cannot be very different from the majority of predictions (otherwise, there
should be different stable points); therefore the two methods often drive to comparable
results.
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As an example, let's consider the MNIST dataset with random forests made of a different
number of trees:

from sklearn.ensemble import RandomForestClassifier
>>> nb_classifications = 100
>>> accuracy = []

>>> for i in range(1, nb_classifications):
      a = cross_val_score(RandomForestClassifier(n_estimators=i),
digits.data, digits.target,  scoring='accuracy', cv=10).mean()
      rf_accuracy.append(a)

The resulting plot is shown in the following figure:
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As expected, the accuracy is low when the number of trees is under a minimum threshold;
however, it starts increasing rapidly with fewer than 10 trees. A value between 20 and 30
trees yields the optimal result (95%), which is higher than for a single decision tree. When
the number of trees is low, the variance of the model is very high and the averaging process
produces many incorrect results; however, increasing the number of trees reduces the
variance and allows the model to converge to a very stable solution. scikit-learn also offers a
variance that enhances the randomness in selecting the best threshold. Using the
ExtraTreesClassifier class, it's possible to implement a model that randomly computes
thresholds and picks the best one. As discussed in the official documentation, this allows us
to further reduce the variance:

from sklearn.ensemble import ExtraTreesClassifier
>>> nb_classifications = 100

>>> for i in range(1, nb_classifications):
      a = cross_val_score(ExtraTreesClassifier(n_estimators=i),
digits.data, digits.target,  scoring='accuracy', cv=10).mean()
      et_accuracy.append(a)

The results (with the same number of trees) in terms of accuracy are slightly better, as
shown in the following figure:
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Feature importance in random forests
The concept of feature importance that we previously introduced can also be applied to 
random forests, computing the average over all trees in the forest:

We can easily test the importance evaluation with a dummy dataset containing 50 features
with 20 noninformative elements:

>>> nb_samples = 1000
>>> X, Y = make_classification(n_samples=nb_samples, n_features=50,
n_informative=30, n_redundant=20, n_classes=2, n_clusters_per_class=5)

The importance of the first 50 features according to a random forest with 20 trees is plotted
in the following figure:
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As expected, there are a few very important features, a block of features with a medium
importance, and a tail containing features that have quite a low influence on the
predictions. This type of plot is also useful during the analysis stage to better understand
how the decision process is structured. With multidimensional datasets, it's rather difficult
to understand the influence of every factor, and sometimes many important business
decisions are made without a complete awareness of their potential impact. Using decision
trees or random forests, it's possible to assess the "real" importance of all features and
exclude all the elements under a fixed threshold. In this way, a complex decision process
can be simplified and, at the same time, be partially denoised.

AdaBoost
Another technique is called AdaBoost (short for Adaptive Boosting) and works in a slightly
different way than many other classifiers. The basic structure behind this can be a decision
tree, but the dataset used for training is continuously adapted to force the model to focus on
those samples that are misclassified. Moreover, the classifiers are added sequentially, so a
new one boosts the previous one by improving the performance in those areas where it was
not as accurate as expected.

At each iteration, a weight factor is applied to each sample so as to increase the importance
of the samples that are wrongly predicted and decrease the importance of others. In other
words, the model is repeatedly boosted, starting as a very weak learner until the maximum
n_estimators number is reached. The predictions, in this case, are always obtained by
majority vote.

In the scikit-learn implementation, there's also a parameter called learning_rate that
weighs the effect of each classifier. The default value is 1.0, so all estimators are considered
to have the same importance. However, as we can see with the MNIST dataset, it's useful to
decrease this value so that each contribution is weakened:

from sklearn.ensemble import AdaBoostClassifier

>>> accuracy = []

>>> nb_classifications = 100

>>> for i in range(1, nb_classifications):
       a = cross_val_score(AdaBoostClassifier(n_estimators=i,
learning_rate=0.1), digits.data, digits.target, scoring='accuracy',
cv=10).mean()
>>> ab_accuracy.append(a)
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The result is shown in the following figure:

The accuracy is not so high as in the previous examples; however, it's possible to see that
when the boosting adds about 20-30 trees, it reaches a stable value. A grid search on
learning_rate could allow you to find the optimal value; however, the sequential
approach in this case is not preferable. A classic random forest, which works with a fixed
number of trees since the first iteration, performs better. This may well be due to the
strategy adopted by AdaBoost; in this set, increasing the weight of the correctly classified
samples and decreasing the strength of misclassifications can produce an oscillation in the
loss function, with a final result that is not the optimal minimum point. Repeating the
experiment with the Iris dataset (which is structurally much simpler) yields better results:

from sklearn.datasets import load_iris

>>> iris = load_iris()

>>> ada = AdaBoostClassifier(n_estimators=100, learning_rate=1.0)
>>> cross_val_score(ada, iris.data, iris.target, scoring='accuracy',
cv=10).mean()
0.94666666666666666
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In this case, a learning rate of 1.0 is the best choice, and it's easy to understand that the
boosting process can be stopped after a few iterations. In the following figure, you can see a
plot showing the accuracy for this dataset:

After about 10 iterations, the accuracy becomes stable (the residual oscillation can be
discarded), reaching a value that is compatible with this dataset. The advantage of using
AdaBoost can be appreciated in terms of resources; it doesn't work with a fully configured
set of classifiers and the whole set of samples. Therefore, it can help save time when
training on large datasets.
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Gradient tree boosting
Gradient tree boosting is a technique that allows you to build a tree ensemble step by step
with the goal of minimizing a target loss function. The generic output of the ensemble can
be represented as:

Here, fi(x) is a function representing a weak learner. The algorithm is based on the concept
of adding a new decision tree at each step so as to minimize the global loss function using
the steepest gradient descent method (see h t t p s ://e n . w i k i p e d i a . o r g /w i k i /M e t h o d _ o f _ s

t e e p e s t _ d e s c e n t , for further information):

After introducing the gradient, the previous expression becomes:

scikit-learn implements the GradientBoostingClassifier class, supporting two
classification loss functions:

Binomial/multinomial negative log-likelihood (which is the default choice)
Exponential (such as AdaBoost)

Let's evaluate the accuracy of this method using a more complex dummy dataset made up
of 500 samples with four features (three informative and one redundant) and three classes:

from sklearn.datasets import make_classification

>>> nb_samples = 500

>>> X, Y = make_classification(n_samples=nb_samples, n_features=4,
n_informative=3, n_redundant=1, n_classes=3)
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Now we can collect the cross-validation average accuracy for a number of estimators in the
range (1, 50). The loss function is the default one (multinomial negative log-likelihood):

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score

>>> a = []
>>> max_estimators = 50

>>> for i in range(1, max_estimators):
>>> score = cross_val_score(GradientBoostingClassifier(n_estimators=i,
learning_rate=10.0/float(i)), X, Y, cv=10, scoring='accuracy').mean()
>>> a.append(score)

While increasing the number of estimators (parameter n_estimators), it's important to
decrease the learning rate (parameter learning_rate). The optimal value cannot be easily
predicted; therefore, it's often useful to perform a grid search. In our example, I've set a very
high learning rate at the beginning (5.0), which converges to 0.05 when the number of
estimators is equal to 100. This is not a perfect choice (unacceptable in most real cases!), and
it has been made only to show the different accuracy performances. The results are shown
in the following figure:
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As it's possible to see, the optimal number of estimators is about 50, with a learning rate of
0.1. The reader can try different combinations and compare the performances of this
algorithm with the other ensemble methods.

Voting classifier
A very interesting ensemble solution is offered by the class VotingClassifier, which isn't
an actual classifier but a wrapper for a set of different ones that are trained and evaluated in
parallel. The final decision for a prediction is taken by majority vote according to two
different strategies:

Hard voting: In this case, the class that received the major number of votes, Nc(yt),
will be chosen:

Soft voting: In this case, the probability vectors for each predicted class (for all
classifiers) are summed up and averaged. The winning class is the one
corresponding to the highest value:

Let's consider a dummy dataset and compute the accuracy with a hard voting strategy:

from sklearn.datasets import make_classification

>>> nb_samples = 500

>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_redundant=0, n_classes=2)
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For our examples, we are going to consider three classifiers: logistic regression, decision tree
(with default Gini impurity), and an SVM (with a polynomial kernel and
probability=True in order to generate the probability vectors). This choice has been
made only for didactic purposes and may not be the best one. When creating an ensemble,
it's useful to consider the different features of each involved classifier and avoid "duplicate"
algorithms (for example, a logistic regression and a linear SVM or a perceptron are likely to
yield very similar performances). In many cases, it can be useful to mix nonlinear classifiers
with random forests or AdaBoost classifiers. The reader can repeat this experiment with
other combinations, comparing the performance of each single estimator and the accuracy
of the voting classifier:

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier

>>> lr = LogisticRegression()
>>> svc = SVC(kernel='poly', probability=True)
>>> dt = DecisionTreeClassifier()

>>> classifiers = [('lr', lr),
                   ('dt', dt),
                   ('svc', svc)]

>>> vc = VotingClassifier(estimators=classifiers, voting='hard')

Computing the cross-validation accuracies, we get:

from sklearn.model_selection import cross_val_score

>>> a = []

>>> a.append(cross_val_score(lr, X, Y, scoring='accuracy', cv=10).mean())
>>> a.append(cross_val_score(dt, X, Y, scoring='accuracy', cv=10).mean())
>>> a.append(cross_val_score(svc, X, Y, scoring='accuracy', cv=10).mean())
>>> a.append(cross_val_score(vc, X, Y, scoring='accuracy', cv=10).mean())

>>> print(np.array(a))
[ 0.90182873  0.84990876  0.87386955  0.89982873]
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The accuracies of each single classifier and of the ensemble are plotted in the following
figure:

As expected, the ensemble takes advantage of the different algorithms and yields better
performance than any single one. We can now repeat the experiment with soft voting,
considering that it's also possible to introduce a weight vector (through the parameter
weights) to give more or less importance to each classifier:
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For example, considering the previous figure, we can decide to give more importance to the
logistic regression and less to the decision tree and SVM:

>>> weights = [1.5, 0.5, 0.75]

>>> vc = VotingClassifier(estimators=classifiers, weights=weights,
voting='soft')

Repeating the same calculations for the cross-validation accuracies, we get:

>>> print(np.array(a))
[ 0.90182873  0.85386795  0.87386955  0.89578952]

The resulting plot is shown in the following figure:

Weighting is not limited to the soft strategy. It can also be applied to hard voting, but in that
case, it will be used to filter (reduce or increase) the number of actual occurrences.
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Here, Nc(yt,w) is the number of votes for each target class, each of them multiplied by the
corresponding classifier weighting factor.

A voting classifier can be a good choice whenever a single strategy is not able to reach the
desired accuracy threshold; while exploiting the different approaches, it's possible to
capture many microtrends using only a small set of strong (but sometimes limited) learners.

References
Louppe G., Wehenkel L., Sutera A., and Geurts P., Understanding variable importances in
forests of randomized trees, NIPS Proceedings 2013.

Summary
In this chapter, we introduced decision trees as a particular kind of classifier. The basic idea
behind their concept is that a decision process can become sequential by using splitting
nodes, where, according to the sample, a branch is chosen until we reach a final leaf. In
order to build such a tree, the concept of impurity was introduced; starting from a complete
dataset, our goal is to find a split point that creates two distinct sets that should share the
minimum number of features and, at the end of the process, should be associated with a
single target class. The complexity of a tree depends on the intrinsic purity—in other words,
when it's always easy to determine a feature that best separates a set, the depth will be
lower. However, in many cases, this is almost impossible, so the resulting tree needs many
intermediate nodes to reduce the impurity until it reaches the final leaves.

We also discussed some ensemble learning approaches: random forests, AdaBoost, gradient
tree boosting and voting classifiers. They are all based on the idea of training several weak
learners and evaluating their predictions using a majority vote or an average. However,
while a random forest creates a set of decision trees that are partially randomly trained,
AdaBoost and gradient boost trees adopt the technique of boosting a model by adding a
new one, step after step, and focusing only on those samples that have been previously
misclassified or by focusing on the minimization of a specific loss function. A voting
classifier, instead, allows the mixing of different classifiers, adopting a majority vote to
decide which class must be considered as the winning one during a prediction.
In the next chapter, we're going to introduce the first unsupervised learning approach, k-
means, which is one of most diffused clustering algorithms. We will concentrate on its
strengths and weaknesses, and explore some alternatives offered by scikit-learn.
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Clustering Fundamentals

In this chapter, we're going to introduce the basic concepts of clustering and the structure of
k-means, a quite common algorithm that can solve many problems efficiently. However, its
assumptions are very strong, in particular those concerning the convexity of the clusters,
and this can lead to some limitations in its adoption. We're going to discuss its
mathematical foundation and how it can be optimized. Moreover, we're going to analyze
two alternatives that can be employed when k-means fails to cluster a dataset. These
alternatives are DBSCAN, (which works by considering the differences of sample density),
and spectral clustering, a very powerful approach based on the affinity among points.

Clustering basics
Let's consider a dataset of points:

We assume that it's possible to find a criterion (not unique) so that each sample can be
associated with a specific group:
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Conventionally, each group is called a cluster and the process of finding the function G is
called clustering. Right now, we are not imposing any restriction on the clusters; however,
as our approach is unsupervised, there should be a similarity criterion to join some
elements and separate other ones. Different clustering algorithms are based on alternative
strategies to solve this problem, and can yield very different results. In the following figure,
there's an example of clustering based on four sets of bidimensional samples; the decision to
assign a point to a cluster depends only on its features and sometimes on the position of a
set of other points (neighborhood):

In this book, we're going to discuss hard clustering techniques, where each element must
belong to a single cluster. The alternative approach, called soft clustering (or fuzzy
clustering), is based on a membership score that defines how much the elements are
"compatible" with each cluster. The generic clustering function becomes:
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A vector mi represents the relative membership of xi, and it's often normalized as a
probability distribution.

K-means
The k-means algorithm is based on the (strong) initial condition to decide the number of
clusters through the assignment of k initial centroids or means:

Then the distance between each sample and each centroid is computed and the sample is 
assigned to the cluster where the distance is minimum. This approach is often called
minimizing the inertia of the clusters, which is defined as follows:

The process is iterative—once all the samples have been processed, a new set of centroids
K(1) is computed (now considering the actual elements belonging to the cluster), and all the
distances are recomputed. The algorithm stops when the desired tolerance is reached, or in
other words, when the centroids become stable and, therefore, the inertia is minimized.
Of course, this approach is quite sensitive to the initial conditions, and some methods have
been studied to improve the convergence speed. One of them is called k-means++ (Karteeka
Pavan K., Allam Appa Rao, Dattatreya Rao A. V., and Sridhar G.R., Robust Seed Selection
Algorithm for K-Means Type Algorithms, International Journal of Computer Science and
Information Technology 3, no. 5, October 30, 2011), which selects the initial centroids so that
they are statistically close to the final ones. The mathematical explanation is quite difficult;
however, this method is the default choice for scikit-learn, and it's normally the best choice
for any clustering problem solvable with this algorithm.
Let's consider a simple example with a dummy dataset:

from sklearn.datasets import make_blobs

nb_samples = 1000
X, _ = make_blobs(n_samples=nb_samples, n_features=2, centers=3,
cluster_std=1.5)
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We expect to have three clusters with bidimensional features and a partial overlap due to
the standard deviation of each blob. In our example, we won't use the Y variable (which
contains the expected cluster) because we want to generate only a set of locally coherent
points to try our algorithms.

The resultant plot is shown in the following figure:

In this case, the problem is quite simple to solve, so we expect k-means to separate the three
groups with minimum error in the region of X bounded between [-5, 0]. Keeping the default
values, we get:

from sklearn.cluster import KMeans

>>> km = KMeans(n_clusters=3)
>>> km.fit(X)
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
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    n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)

>>> print(km.cluster_centers_)
[[ 1.39014517,  1.38533993]
 [ 9.78473454,  6.1946332 ]
 [-5.47807472,  3.73913652]]

Replotting the data using three different markers, it's possible to verify how k-means
successfully separated the data:
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In this case, the separation was very easy because k-means is based on Euclidean distance,
which is radial, and therefore the clusters are expected to be convex. When this doesn't
happen, the problem cannot be solved using this algorithm. Most of the time, even if the
convexity is not fully guaranteed, k-means can produce good results, but there are several
situations when the expected clustering is impossible and letting k-means find out the
centroid can lead to completely wrong solutions.
Let's consider the case of concentric circles. scikit-learn provides a built-in function to
generate such datasets:

from sklearn.datasets import make_circles

>>> nb_samples = 1000
>>> X, Y = make_circles(n_samples=nb_samples, noise=0.05)

The plot of this dataset is shown in the following figure:
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We would like to have an internal cluster (corresponding to the samples depicted with
triangular markers) and an external one (depicted by dots). However, such sets are not 
convex, and it's impossible for k-means to separate them correctly (the means should be the
same!). In fact, suppose we try to apply the algorithm to two clusters:

>>> km = KMeans(n_clusters=2)
>>> km.fit(X)
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=2, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)

We get the separation shown in the following figure:
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As expected, k-means converged on the two centroids in the middle of the two half-circles,
and the resulting clustering is quite different from what we expected. Moreover, if the
samples must be considered different according to the distance from the common center,
this result will lead to completely wrong predictions. It's obvious that another method must
be employed.

Finding the optimal number of clusters
One of the most common disadvantages of k-means is related to the choice of the optimal
number of clusters. An excessively small value will determine large groupings that contain
heterogeneous elements, while a large number leads to a scenario where it can be difficult
to identify the differences among clusters. Therefore, we're going to discuss some methods
that can be employed to determine the appropriate number of splits and to evaluate the
corresponding performance.

Optimizing the inertia
The first method is based on the assumption that an appropriate number of clusters must
produce a small inertia. However, this value reaches its minimum (0.0) when the number of
clusters is equal to the number of samples; therefore, we can't look for the minimum, but for
a value which is a trade-off between the inertia and the number of clusters.

Let's suppose we have a dataset of 1,000 elements. We can compute and collect the inertias
(scikit-learn stores these values in the instance variable inertia_) for a different number of
clusters:

>>> nb_clusters = [2, 3, 5, 6, 7, 8, 9, 10]

>>> inertias = []

>>> for n in nb_clusters:
>>>    km = KMeans(n_clusters=n)
>>>    km.fit(X)
>>>    inertias.append(km.inertia_)



Clustering Fundamentals

[ 189 ]

Plotting the values, we get the result shown in the following figure:

As you can see, there's a dramatic reduction between 2 and 3 and then the slope starts
flattening. We want to find a value that, if reduced, leads to a great inertial increase and, if
increased, produces a very small inertial reduction. Therefore, a good choice could be 4 or 5,
while greater values are likely to produce unwanted intracluster splits (till the extreme
situation where each point becomes a single cluster). This method is very simple, and can be
employed as the first approach to determine a potential range. The next strategies are more
complex, and can be used to find the final number of clusters.
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Silhouette score
The silhouette score is based on the principle of "maximum internal cohesion and maximum
cluster separation". In other words, we would like to find the number of clusters that
produce a subdivision of the dataset into dense blocks that are well separated from each
other. In this way, every cluster will contain very similar elements and, selecting two
elements belonging to different clusters, their distance should be greater than the maximum
intracluster one.

After defining a distance metric (Euclidean is normally a good choice), we can compute the
average intracluster distance for each element:

We can also define the average nearest-cluster distance (which corresponds to the lowest
intercluster distance):

The silhouette score for an element xi is defined as:

This value is bounded between -1 and 1, with the following interpretation:

A value close to 1 is good (1 is the best condition) because it means that a(xi) <<
b(xi)
A value close to 0 means that the difference between intra and inter cluster
measures is almost null and therefore there's a cluster overlap
A value close to -1 means that the sample has been assigned to a wrong cluster
because a(xi) >> b(xi)
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scikit-learn allows computing the average silhouette score to have an immediate overview
for different numbers of clusters:

from sklearn.metrics import silhouette_score

>>> nb_clusters = [2, 3, 5, 6, 7, 8, 9, 10]

>>> avg_silhouettes = []

>>> for n in nb_clusters:
>>>    km = KMeans(n_clusters=n)
>>>    Y = km.fit_predict(X)
>>>    avg_silhouettes.append(silhouette_score(X, Y))

The corresponding plot is shown in the following figure:
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The best value is 3 (which is very close to 1.0), however, bearing in mind the previous
method, 4 clusters provide a smaller inertia, together with a reasonable silhouette score.
Therefore, a good choice could be 4 instead of 3. However, the decision between 3 and 4 is
not immediate and should be evaluated by also considering the nature of the dataset. The
silhouette score indicates that there are 3 dense agglomerates, but the inertia diagram
suggests that one of them (at least) can probably be split into two clusters. To have a better
understanding of how the clustering is working, it's also possible to graph the silhouette
plots, showing the sorted score for each sample in all clusters. In the following snippet we
create the plots for a number of clusters equal to 2, 3, 4, and 8:

from sklearn.metrics import silhouette_samples

>>> fig, ax = subplots(2, 2, figsize=(15, 10))

>>> nb_clusters = [2, 3, 4, 8]
>>> mapping = [(0, 0), (0, 1), (1, 0), (1, 1)]

>>> for i, n in enumerate(nb_clusters):
>>>    km = KMeans(n_clusters=n)
>>>    Y = km.fit_predict(X)

>>>    silhouette_values = silhouette_samples(X, Y)
>>>    ax[mapping[i]].set_xticks([-0.15, 0.0, 0.25, 0.5, 0.75, 1.0])
>>>    ax[mapping[i]].set_yticks([])
>>>    ax[mapping[i]].set_title('%d clusters' % n)
>>>    ax[mapping[i]].set_xlim([-0.15, 1])
>>>    ax[mapping[i]].grid()
>>>    y_lower = 20

>>>    for t in range(n):
>>>        ct_values = silhouette_values[Y == t]
>>>        ct_values.sort()
>>>        y_upper = y_lower + ct_values.shape[0]

>>>        color = cm.Accent(float(t) / n)
>>>        ax[mapping[i]].fill_betweenx(np.arange(y_lower, y_upper), 0,
>>>                                     ct_values, facecolor=color,
edgecolor=color)

>>>        y_lower = y_upper + 20

The silhouette coefficients for each sample are computed using the function
silhouette_values (which are always bounded between -1 and 1). In this case, we are
limiting the graph between -0.15 and 1 because there are no smaller values. However, it's
important to check the whole range before restricting it.
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The resulting graph is shown in the following figure:

The width of each silhouette is proportional to the number of samples belonging to a
specific cluster, and its shape is determined by the scores of each sample. An ideal plot
should contain homogeneous and long silhouettes without peaks (they must be similar to
trapezoids rather than triangles) because we expect to have a very low score variance
among samples in the same cluster. For 2 clusters, the shapes are acceptable, but one cluster
has an average score of 0.5, while the other has a value greater than 0.75; therefore, the first
cluster has a low internal coherence. A completely different situation is shown in the plot
corresponding to 8 clusters. All the silhouettes are triangular and their maximum score is
slightly greater than 0.5. It means that all the clusters are internally coherent, but the
separation is unacceptable. With 3 clusters, the plot is almost perfect, except for the width of
the second silhouette. Without further metrics, we could consider this number as the best
choice (confirmed also by the average score), but the inertia is lower for a higher numbers of
clusters. With 4 clusters, the plot is slightly worse, with two silhouettes having a maximum
score of about 0.5. This means that two clusters are perfectly coherent and separated, while
the remaining two are rather coherent, but they aren't probably well separated. Right now,
our choice should be made between 3 and 4. The next methods will help us in banishing all
doubts.
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Calinski-Harabasz index
Another method that is based on the concept of dense and well-separated clusters is the
Calinski-Harabasz index. To build it, we need first to define the inter cluster dispersion. If
we have k clusters with their relative centroids and the global centroid, the inter-cluster
dispersion (BCD) is defined as:

In the above expression, nk is the number of elements belonging to the cluster k, mu (the
Greek letter in the formula) is the global centroid, and mui is the centroid of cluster i. The
intracluster dispersion (WCD) is defined as:

The Calinski-Harabasz index is defined as the ratio between BCD(k) and WCD(k):

As we look for a low intracluster dispersion (dense agglomerates) and a high intercluster
dispersion (well-separated agglomerates), we need to find the number of clusters that
maximizes this index. We can obtain a graph in a way similar to what we have already done
for the silhouette score:

from sklearn.metrics import calinski_harabaz_score

>>> nb_clusters = [2, 3, 5, 6, 7, 8, 9, 10]

>>> ch_scores = []

>>> km = KMeans(n_clusters=n)
>>> Y = km.fit_predict(X)

>>> for n in nb_clusters:
>>>    km = KMeans(n_clusters=n)
>>>    Y = km.fit_predict(X)
>>>    ch_scores.append(calinski_harabaz_score(X, Y))
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The resulting plot is shown in the following figure:

As expected, the highest value (5,500) is obtained with 3 clusters, while 4 clusters yield a
value slightly below 5,000. Considering only this method, there's no doubt that the best
choice is 3, even if 4 is still a reasonable value. Let's consider the last method, which
evaluates the overall stability.
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Cluster instability
Another approach is based on the concept of cluster instability defined in Von Luxburg U.,
Cluster stability: an overview, arXiv 1007:1075v1, 7 July 2010. Intuitively, we can say that a
clustering approach is stable if perturbed versions of the same dataset produce very similar
results. More formally, if we have a dataset X, we can define a set of m perturbed (or noisy)
versions:

Considering a distance metric d(C(X1), C(X2)) between two clusterings with the same
number (k) of clusters, the instability is defined as the average distance between couples of
clusterings of noisy versions:

For our purposes, we need to find the value of k that minimizes I(C) (and therefore
maximizes the stability). First of all, we need to produce some noisy versions of the dataset.
Let's suppose that X contains 1,000 bidimensional samples with a standard deviation of
10.0. We can perturb X by adding a uniform random value (in the range [-2.0, 2.0]) with a
probability of 0.25:

>>> nb_noisy_datasets = 4

>>> X_noise = []

>>> for _ in range(nb_noisy_datasets):
>>>    Xn = np.ndarray(shape=(1000, 2))
>>>    for i, x in enumerate(X):
>>>        if np.random.uniform(0, 1) < 0.25:
>>>            Xn[i] = X[i] + np.random.uniform(-2.0, 2.0)
>>>        else:
>>>            Xn[i] = X[i]
>>>    X_noise.append(Xn)
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Here we are assuming to have four perturbed versions. As a metric, we adopt the Hamming
distance, which is proportional (if normalized) to the number of output elements that
disagree. At this point, we can compute the instabilities for various numbers of clusters:

from sklearn.metrics.pairwise import pairwise_distances

>>> instabilities = []

>>> for n in nb_clusters:
>>>    Yn = []
>>>
>>>    for Xn in X_noise:
>>>        km = KMeans(n_clusters=n)
>>>        Yn.append(km.fit_predict(Xn))

>>> distances = []

>>> for i in range(len(Yn)-1):
>>>        for j in range(i, len(Yn)):
>>>            d = pairwise_distances(Yn[i].reshape(-1, 1),
Yn[j].reshape(-1, -1), 'hamming')
>>>            distances.append(d[0, 0])
>>>    instability = (2.0 * np.sum(distances)) / float(nb_noisy_datasets **
2)
>>>    instabilities.append(instability)
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As the distances are symmetrical, we compute them only for the upper triangular part of
the matrix. The result is shown in the following figure:

Excluding the configuration with 2 clusters, where the inertia is very high, we have a
minimum for 3 clusters, a value that has already been confirmed by the three previous
methods. Therefore, we can finally decide to set n_clusters=3, excluding the options of 4
or more clusters. This method is very powerful, but it's important to evaluate the stability
with a reasonable number of noisy datasets, taking care not to excessively alter the original
geometry. A good choice is to use Gaussian noise with a variance set to a fraction (for
example 1/10) of the dataset variance. Alternative approaches are presented in Von Luxburg
U., Cluster stability: an overview, arXiv 1007:1075v1, 7 July 2010.

Even if we have presented these methods with k-means, they can be
applied to any clustering algorithm to evaluate the performance and
compare them.
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DBSCAN
DBSCAN or Density-Based Spatial Clustering of Applications with Noise is a powerful
algorithm that can easily solve non-convex problems where k-means fails. The idea is
simple: A cluster is a high-density area (there are no restrictions on its shape) surrounded
by a low-density one. This statement is generally true, and doesn't need an initial
declaration about the number of expected clusters. The procedure starts by analyzing a
small area (formally, a point surrounded by a minimum number of other samples). If the
density is enough, it is considered part of a cluster. At this point, the neighbors are taken
into account. If they also have a high density, they are merged with the first area; otherwise,
they determine a topological separation. When all the areas have been scanned, the clusters
have also been determined because they are islands surrounded by empty space.

scikit-learn allows us to control this procedure with two parameters:

eps: Responsible for defining the maximum distance between two neighbors.
Higher values will aggregate more points, while smaller ones will create more
clusters.
min_samples: This determines how many surrounding points are necessary to
define an area (also known as the core-point).

Let's try DBSCAN with a very hard clustering problem, called half-moons. The dataset can
be created using a built-in function:

from sklearn.datasets import make_moons

>>> nb_samples = 1000
>>> X, Y = make_moons(n_samples=nb_samples, noise=0.05)
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A plot of the dataset is shown in the following figure:

Just to understand, k-means will cluster by finding the optimal convexity, and the result is
shown in the following figure:
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Of course, this separation is unacceptable, and there's no way to improve the accuracy. Let's
try it with DBSCAN (with eps set to 0.1 and the default value of 5 for min_samples):

from sklearn.cluster import DBSCAN

>>> dbs = DBSCAN(eps=0.1)
>>> Y = dbs.fit_predict(X)

In a different manner than other implementations, DBSCAN predicts the label during the
training process, so we already have an array Y containing the cluster assigned to each
sample. In the following figure, there's a representation with two different markers:

As you can see, the accuracy is very high and only three isolated points are misclassified (in
this case, we know their class, so we can use this term even if it's a clustering process).
However, by performing a grid search, it's easy to find the best values that optimize the
clustering process. It's important to tune up those parameters to avoid two common
problems: few big clusters and many small ones. This problem can be easily avoided using
the following method.
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Spectral clustering
Spectral clustering is a more sophisticated approach based on a symmetric affinity matrix:

Here, each element aij represents a measure of affinity between two samples. The most
diffused measures (also supported by scikit-learn) are radial basis function and nearest
neighbors. However, any kernel can be used if it produces measures that have the same
features of a distance (non-negative, symmetric, and increasing).

The Laplacian matrix is computed and a standard clustering algorithm is applied to a
subset of eigenvectors (this element is strictly related to each single strategy).
scikit-learn implements the Shi-Malik algorithm (Shi J., Malik J., Normalized Cuts and Image
Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, 08/2000),
also known as normalized-cuts, which partitions the samples into two sets (G1 and G2,
which are formally graphs where each point is a vertex and the edges are derived from the
normalized Laplacian matrix) so that the weights corresponding to the points inside a
cluster are quite higher than the one belonging to the cut. A complete mathematical
explanation is beyond the scope of this book; however, in Von Luxburg U., A Tutorial on
Spectral Clustering, 2007, you can read a full explanation of many alternative spectral
approaches.

Let's consider the previous half-moon example. In this case, the affinity (just like for
DBSCAN) should be based on the nearest neighbors function; however, it's useful to
compare different kernels. In the first experiment, we use an RBF kernel with different
values for the gamma parameter:

from sklearn.cluster import SpectralClustering

>>> Yss = []
>>> gammas = np.linspace(0, 12, 4)

>>> for gamma in gammas:
       sc = SpectralClustering(n_clusters=2, affinity='rbf', gamma=gamma)
       Yss.append(sc.fit_predict(X))
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In this algorithm, we need to specify how many clusters we want, so we set the value to 2.
The resulting plots are shown in the following figure:

As you can see, when the scaling factor gamma is increased the separation becomes more
accurate; however, considering the dataset, using the nearest neighbors kernel is not
necessary in any search:

>>> sc = SpectralClustering(n_clusters=2, affinity='nearest_neighbors')
>>> Ys = sc.fit_predict(X)

The resulting plot is shown in the following figure:
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As for many other kernel-based methods, spectral clustering needs a previous analysis to
detect which kernel can provide the best values for the affinity matrix. scikit-learn also
allows us to define custom kernels for those tasks that cannot easily be solved using the
standard ones.

Evaluation methods based on the ground
truth
In this section, we present some evaluation methods that require the knowledge of the
ground truth. This condition is not always easy to obtain because clustering is normally
applied as an unsupervised method; however, in some cases, the training set has been
manually (or automatically) labeled, and it's useful to evaluate a model before predicting
the clusters of new samples.

Homogeneity
An important requirement for a clustering algorithm (given the ground truth) is that each
cluster should contain only samples belonging to a single class. In Chapter 2, Important
Elements in Machine Learning, we have defined the concepts of entropy H(X) and conditional
entropy H(X|Y), which measures the uncertainty of X given the knowledge of Y. Therefore,
if the class set is denoted as C and the cluster set as K, H(C|K) is a measure of the
uncertainty in determining the right class after having clustered the dataset. To have a
homogeneity score, it's necessary to normalize this value considering the initial entropy of
the class set H(C):

In scikit-learn, there's the built-in function homogeneity_score() that can be used to
compute this value. For this and the next few examples, we assume that we have a labeled
dataset X (with true labels Y):

from sklearn.metrics import homogeneity_score

>>> km = KMeans(n_clusters=4)
>>> Yp = km.fit_predict(X)
>>> print(homogeneity_score(Y, Yp))
0.806560739827
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A value of 0.8 means that there's a residual uncertainty of about 20% because one or more
clusters contain some points belonging to a secondary class. As with the other methods
shown in the previous section, it's possible to use the homogeneity score to determine the
optimal number of clusters.

Completeness
A complementary requirement is that each sample belonging to a class is assigned to the
same cluster. This measure can be determined using the conditional entropy H(K|C), which
is the uncertainty in determining the right cluster given the knowledge of the class. Like for
the homogeneity score, we need to normalize this using the entropy H(K):

We can compute this score (on the same dataset) using the function
completeness_score():

from sklearn.metrics import completeness_score

>>> km = KMeans(n_clusters=4)
>>> Yp = km.fit_predict(X)
>>> print(completeness_score(Y, Yp))
0.807166746307

Also, in this case, the value is rather high, meaning that the majority of samples belonging
to a class have been assigned to the same cluster. This value can be improved using a
different number of clusters or changing the algorithm.

Adjusted rand index
The adjusted rand index measures the similarity between the original class partitioning (Y)
and the clustering. Bearing in mind the same notation adopted in the previous scores, we
can define:

a: The number of pairs of elements belonging to the same partition in the class set
C and to the same partition in the clustering set K
b: The number of pairs of elements belonging to different partitions in the class
set C and to different partitions in the clustering set K
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If we total number of samples in the dataset is n, the rand index is defined as:

The Corrected for Chance version is the adjusted rand index, defined as follows:

We can compute the adjusted rand score using the function adjusted_rand_score():

from sklearn.metrics import adjusted_rand_score

>>> km = KMeans(n_clusters=4)
>>> Yp = km.fit_predict(X)
>>> print(adjusted_rand_score(Y, Yp))
0.831103137285

As the adjusted rand score is bounded between -1.0 and 1.0, with negative values
representing a bad situation (the assignments are strongly uncorrelated), a score of 0.83
means that the clustering is quite similar to the ground truth. Also, in this case, it's possible
to optimize this value by trying different numbers of clusters or clustering strategies.
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Summary
In this chapter, we introduced the k-means algorithm, which is based on the idea of
defining (randomly or according to some criteria) k centroids that represent the clusters and
optimize their position so that the sum of squared distances for every point in each cluster
and the centroid is minimum. As the distance is a radial function, k-means assumes clusters
to be convex and cannot solve problems where the shapes have deep concavities (like the
half-moon problem).
In order to solve such situations, we presented two alternatives. The first one is called
DBSCAN and is a simple algorithm that analyzes the difference between points surrounded
by other samples and boundary samples. In this way, it can easily determine high-density
areas (which become clusters) and low-density spaces among them. There are no
assumptions about the shape or the number of clusters, so it's necessary to tune up the other
parameters so as to generate the right number of clusters.
Spectral clustering is a family of algorithms based on a measure of affinity among samples.
They use a classical method (such as k-means) on subspaces generated by the Laplacian of
the affinity matrix. In this way, it's possible to exploit the power of many kernel functions to
determine the affinity between points, which a simple distance cannot classify correctly.
This kind of clustering is particularly efficient for image segmentation, but it can also be a
good choice whenever the other methods fail to separate a dataset correctly.
In the next chapter, we're going to discuss another approach called hierarchical clustering. It
allows us to segment data by splitting and merging clusters until a final configuration is
reached.
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Hierarchical Clustering

In this chapter, we're going to discuss a particular clustering technique called hierarchical
clustering. Instead of working with the relationships existing in the whole dataset, this
approach starts with a single entity containing all elements (divisive) or N separate
elements (agglomerative), and proceeds by splitting or merging the clusters according to
some specific criteria, which we're going to analyze and compare.

Hierarchical strategies
Hierarchical clustering is based on the general concept of finding a hierarchy of partial
clusters, built using either a bottom-up or a top-down approach. More formally, they are
called:

Agglomerative clustering: The process starts from the bottom (each initial cluster
is made up of a single element) and proceeds by merging the clusters until a stop 
criterion is reached. In general, the target has a sufficiently small number of
clusters at the end of the process.
Divisive clustering: In this case, the initial state is a single cluster with all 
samples and the process proceeds by splitting the intermediate cluster until all
elements are separated. At this point, the process continues with an aggregation
criterion based on the dissimilarity between elements. A famous approach (which
is beyond the scope of this book) called DIANA is described in Kaufman L.,
Roussew P.J., Finding Groups In Data: An Introduction To Cluster Analysis, Wiley.

scikit-learn implements only the agglomerative clustering. However, this is not a real
limitation because the complexity of divisive clustering is higher and the performances of
agglomerative clustering are quite similar to the ones achieved by the divisive approach.
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Agglomerative clustering
Let's consider the following dataset:

We define affinity, a metric function of two arguments with the same dimensionality m.
The most common metrics (also supported by scikit-learn) are:

Euclidean or L2:

Manhattan (also known as City Block) or L1:

Cosine distance:
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The Euclidean distance is normally a good choice, but sometimes it's useful to a have a
metric whose difference with the Euclidean one gets larger and larger. The Manhattan
metric has this property; to show it, in the following figure there's a plot representing the
distances from the origin of points belonging to the line y = x:

The cosine distance, instead, is useful when we need a distance proportional to the angle
between two vectors. If the direction is the same, the distance is null, while it is maximum
when the angle is equal to 180° (meaning opposite directions). This distance can be
employed when the clustering must not consider the L2 norm of each point. For example, a
dataset could contain bidimensional points with different scales and we need to group them
into clusters corresponding to circular sectors. Alternatively, we could be interested in their
position according to the four quadrants because we have assigned a specific meaning
(invariant to the distance between a point and the origin) to each of them.
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Once a metric has been chosen (let's simply call it d(x,y)), the next step is defining a strategy
(called linkage) to aggregate different clusters. There are many possible methods, but scikit-
learn supports the three most common ones:

Complete linkage: For each pair of clusters, the algorithm computes and merges
them to minimize the maximum distance between the clusters (in other words,
the distance of the farthest elements):

Average linkage: It's similar to complete linkage, but in this case the algorithm
uses the average distance between the pairs of clusters:

Ward's linkage: In this method, all clusters are considered and the algorithm
computes the sum of squared distances within the clusters and merges them to
minimize it. From a statistical viewpoint, the process of agglomeration leads to a
reduction in the variance of each resulting cluster. The measure is:

The Ward's linkage supports only the Euclidean distance.
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Dendrograms
To better understand the agglomeration process, it's useful to introduce a graphical method
called a dendrogram, which shows in a static way how the aggregations are performed,
starting from the bottom (where all samples are separated) till the top (where the linkage is
complete). Unfortunately, scikit-learn doesn't support them. However, SciPy (which is a
mandatory requirement for it) provides some useful built-in functions.

Let's start by creating a dummy dataset:

from sklearn.datasets import make_blobs

>>> nb_samples = 25
>>> X, Y = make_blobs(n_samples=nb_samples, n_features=2, centers=3,
cluster_std=1.5)

To avoid excessive complexity in the resulting plot, the number of samples has been kept
very low. In the following figure, there's a representation of the dataset:
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Now we can compute the dendrogram. The first step is computing a distance matrix:

from scipy.spatial.distance import pdist

>>> Xdist = pdist(X, metric='euclidean')

We have chosen a Euclidean metric, which is the most suitable in this case. At this point, it's
necessary to decide which linkage we want. Let's take Ward; however, all known methods
are supported:

from scipy.cluster.hierarchy import linkage

>>> Xl = linkage(Xdist, method='ward')

Now, it's possible to create and visualize a dendrogram:

from scipy.cluster.hierarchy import dendrogram

>>> Xd = dendrogram(Xl)

The resulting plot is shown in the following screenshot:
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In the x axis, there are the samples (numbered progressively), while the y axis represents the
distance. Every arch connects two clusters that are merged together by the algorithm. For
example, 23 and 24 are single elements merged together. The element 13 is then aggregated
to the resulting cluster, and so the process continues.

As you can see, if we decide to cut the graph at the distance of 10, we get two separate
clusters: the first one from 15 to 24 and the other one from 0 to 20. Looking at the previous
dataset plot, all the points with Y < 10 are considered to be part of the first cluster, while the
others belong to the second cluster. If we increase the distance, the linkage becomes very
aggressive (particularly in this example with only a few samples) and with values greater
than 27, only one cluster is generated (even if the internal variance is quite high!).

Agglomerative clustering in scikit-learn
Let's consider a more complex dummy dataset with 8 centers:

>>> nb_samples = 3000
>>> X, _ = make_blobs(n_samples=nb_samples, n_features=2, centers=8,
cluster_std=2.0)

A graphical representation is shown in the following figure:
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We can now perform an agglomerative clustering with different linkages (always keeping
the Euclidean distance) and compare the results. Let's start with a complete linkage
(AgglomerativeClustering uses the method fit_predict() to train the model and
transform the original dataset):

from sklearn.cluster import AgglomerativeClustering

>>> ac = AgglomerativeClustering(n_clusters=8, linkage='complete')
>>> Y = ac.fit_predict(X)

A plot of the result (using both different markers and colors) is shown in the following
figure:
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The result is totally bad. This approach penalizes the inter-variance and merges cluster,
which in most cases should be different. In the previous plot, the three clusters in the
middle are quite fuzzy, and the probability of wrong placement is very high considering the
variance of the cluster represented by dots. Let's now consider the average linkage:

>>> ac = AgglomerativeClustering(n_clusters=8, linkage='average')
>>> Y = ac.fit_predict(X)

The result is shown in the following screenshot:
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In this case, the clusters are better defined, even if some of them could have become really
small. It can also be useful to try other metrics (in particular L1) and compare the results.
The last method, which is often the best (it's the default one), is Ward's linkage, that can be
used only with a Euclidean metric (also the default one):

>>> ac = AgglomerativeClustering(n_clusters=8)
>>> Y = ac.fit_predict(X)

The resulting plot is shown in the following figure:

In this case, it's impossible to modify the metric so, as also suggested in the official scikit-
learn documentation, a valid alternative could be the average linkage, which can be used
with any affinity.
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Connectivity constraints
scikit-learn also allows specifying a connectivity matrix, which can be used as a constraint
when finding the clusters to merge. In this way, clusters which are far from each other (non-
adjacent in the connectivity matrix) are skipped. A very common method for creating such
a matrix involves using the k-nearest neighbors graph function (implemented as
kneighbors_graph()), that is based on the number of neighbors a sample has (according
to a specific metric). In the following example, we consider a circular dummy dataset (often
used in the official documentation also):

from sklearn.datasets import make_circles

>>> nb_samples = 3000
>>> X, _ = make_circles(n_samples=nb_samples, noise=0.05)

A graphical representation is shown in the following figure:
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We start with unstructured agglomerative clustering based on average linkage and impose
20 clusters:

>>> ac = AgglomerativeClustering(n_clusters=20, linkage='average')
>>> ac.fit(X)

In this case, we have used the method fit() because the class
AgglomerativeClustering, after being trained, exposes the labels (cluster number)
through the instance variable labels_ and it's easier to use this variable when the number
of clusters is very high. A graphical plot of the result is shown in the following figure:

Now we can try to impose a constraint with different values for k:

from sklearn.neighbors import kneighbors_graph

>>> acc = []
>>> k = [50, 100, 200, 500]
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>>> for i in range(4):
>>>    kng = kneighbors_graph(X, k[i])
>>>    ac1 = AgglomerativeClustering(n_clusters=20, connectivity=kng,
linkage='average')
>>>    ac1.fit(X)
>>>    acc.append(ac1)

The resulting plots are shown in the following screenshot:

As you can see, imposing a constraint (in this case, based on k-nearest neighbors) allows
controlling how the agglomeration creates new clusters and can be a powerful tool for
tuning the models, or for avoiding elements whose distance is large in the original space
could be taken into account during the merging phase (this is particularly useful when
clustering images).
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Summary
In this chapter, we have presented hierarchical clustering, focusing our attention on the
agglomerative version, which is the only one supported by scikit-learn. We discussed the
philosophy, which is rather different to the one adopted by many other methods. In
agglomerative clustering, the process begins by considering each sample as a single cluster
and proceeds by merging the blocks until the number of desired clusters is reached. In
order to perform this task, two elements are needed: a metric function (also called affinity)
and a linkage criterion. The former is used to determine the distance between the elements,
while the latter is a target function that is used to determine which clusters must be merged.

We also saw how to visualize this process through dendrograms using SciPy. This
technique is quite useful when it's necessary to maintain a complete control of the process
and the final number of clusters is initially unknown (it's easier to decide where to cut the
graph). We showed how to use scikit-learn to perform agglomerative clustering with
different metrics and linkages and, at the end of the chapter, we also introduced the
connectivity constraints that are useful when it's necessary to force the process to avoid
merging clusters which are too far apart.

In the next chapter, we're going to introduce the recommendation systems, that are
employed daily by many different systems to automatically suggest items to a user,
according to his/her similarity to other users and their preferences.
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Introduction to

Recommendation Systems
Imagine an online shop with thousands of articles. If you're not a registered user, you'll
probably see a homepage with some highlights, but if you've already bought some items, it
would be interesting if the website showed products that you would probably buy, instead
of a random selection. This is the purpose of a recommender system, and in this chapter,
we're going to discuss the most common techniques to create such a system.

The basic concepts are users, items, and ratings (or an implicit feedback about the products,
like the fact of having bought them). Every model must work with known data (like in a
supervised scenario), to be able to suggest the most suitable items or to predict the ratings
for all the items not evaluated yet.

We're going to discuss two different kinds of strategies:

User or content based
Collaborative filtering

The first approach is based on the information we have about users or products and its
target is to associate a new user with an existing group of peers to suggest all the items
positively rated by the other members, or to cluster the products according to their features
and propose a subset of items similar to the one taken into account. The second approach,
which is a little bit more sophisticated, works with explicit ratings and its purpose is to
predict this value for every item and every user. Even if collaborative filtering needs more
computational power as, nowadays, the great availability of cheap resources, allows using
this algorithm with millions of users and products to provide the most accurate
recommendations in real-time. The model can also be retrained or updated every day.
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Naive user-based systems
In this first scenario, we assume that we have a set of users represented by feature vectors:

Typical features are age, gender, interests, and so on. All of them must be encoded using
one of the techniques discussed in the previous chapters (for example, they can be
binarized). Moreover, we have a set of items:

Let's assume also that there is a relation which associates each user with a subset of items
(bought or positively reviewed), items for which an explicit action or feedback has been
performed:

In a user-based system, the users are periodically clustered (normally using a k-nearest
neighbors approach), and therefore, considering a generic user u (also new), we can
immediately determine the ball containing all the users who are similar (therefore
neighbors) to our sample:

At this point, we can create the set of suggested items using the relation previously
introduced:

In other words, the set contains all the unique products positively rated or bought by the
neighborhood. I've used the adjective naive because there's a similar alternative that we're
going to discuss in the section dedicated to collaborative filtering.



Introduction to Recommendation Systems

[ 224 ]

User-based system implementation with scikit-
learn
For our purposes, we need to create a dummy dataset of users and products:

import numpy as np

>>> nb_users = 1000
>>> users = np.zeros(shape=(nb_users, 4))

>>> for i in range(nb_users):
>>>    users[i, 0] = np.random.randint(0, 4)
>>>    users[i, 1] = np.random.randint(0, 2)
>>>    users[i, 2] = np.random.randint(0, 5)
>>>    users[i, 3] = np.random.randint(0, 5)

We assume that we have 1,000 users with four features represented by integer numbers
bounded between 0 and 4 or 5. It doesn't matter what they mean; their role is to characterize
a user and allow for clustering of the set.

For the products, we also need to create the association:

>>> nb_product = 20
>>> user_products = np.random.randint(0, nb_product, size=(nb_users, 5))

We assume that we have 20 different items (from 1 to 20; 0 means that a user didn't buy
anything) and an association matrix where each user is linked to a number of products
bounded between 0 and 5 (maximum). For example:
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At this point, we need to cluster the users using the NearestNeighbors implementation
provided by scikit-learn:

from sklearn.neighbors import NearestNeighbors

>>> nn = NearestNeighbors(n_neighbors=20, radius=2.0)
>>> nn.fit(users)
NearestNeighbors(algorithm='auto', leaf_size=30, metric='minkowski',
         metric_params=None, n_jobs=1, n_neighbors=20, p=2, radius=2.0)

We have selected to have 20 neighbors and a Euclidean radius equal to 2. This parameter is
used when we want to query the model to know which items are contained in the ball
whose center is a sample and with a fixed radius. In our case, we are going to query the
model to get all the neighbors of a test user:

>>> test_user = np.array([2, 0, 3, 2])
>>> d, neighbors = nn.kneighbors(test_user.reshape(1, -1))

>>> print(neighbors)
array([[933,  67, 901, 208,  23, 720, 121, 156, 167,  60, 337, 549,  93,
        563, 326, 944, 163, 436, 174,  22]], dtype=int64)

Now we need to build the recommendation list using the association matrix:

>>> suggested_products = []

>>> for n in neighbors:
>>>    for products in user_products[n]:
>>>       for product in products:
>>>          if product != 0 and product not in suggested_products:
>>>             suggested_products.append(product)

>>> print(suggested_products)
[14, 5, 13, 4, 8, 9, 16, 18, 10, 7, 1, 19, 12, 11, 6, 17, 15, 3, 2]

For each neighbor, we retrieve the products he/she bought and perform a union, avoiding
the inclusion of items with zero value (meaning no product) and double elements. The
result is a list (not sorted) of suggestions that can be obtained almost in real time for many
different systems. In some cases, when the number of users or items is too huge, it's possible
to limit the list to a fixed number of elements and to reduce the number of neighbors. This
approach is also naive because it doesn't consider the actual distance (or similarity) between
users to weigh the suggestions. It's possible to consider the distance as a weighing factor,
but it's simpler to adopt the collaborative filtering approach which provides a more robust
solution.
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Content-based systems
This is probably the simplest method and it's based only on the products, modeled as
feature vectors:

Just like the users, the features can also be categorical (indeed, for products it's easier), for
example, the genre of a book or a movie, and they can be used together with numerical
values (like price, length, number of positive reviews, and so on) after encoding them.

Then a clustering strategy is adopted, even if the most used is k-nearest neighbors as it
allows controlling the size of each neighborhood to determine, given a sample product, the
quality and the number of suggestions.

Using scikit-learn, first of all we create a dummy product dataset:

>>> nb_items = 1000
>>> items = np.zeros(shape=(nb_items, 4))

>>> for i in range(nb_items):
>>>    items[i, 0] = np.random.randint(0, 100)
>>>    items[i, 1] = np.random.randint(0, 100)
>>>    items[i, 2] = np.random.randint(0, 100)
>>>    items[i, 3] = np.random.randint(0, 100)

In this case, we have 1000 samples with four integer features bounded between 0 and 100.
Then we proceed, as in the previous example, towards clustering them:

>>> nn = NearestNeighbors(n_neighbors=10, radius=5.0)
>>> nn.fit(items)

At this point, it's possible to query our model with the method radius_neighbors(),
which allows us to restrict our research only to a limited subset. The default radius (set
through the parameter radius) is 5.0, but we can change it dynamically:

>>> test_product = np.array([15, 60, 28, 73])
>>> d, suggestions = nn.radius_neighbors(test_product.reshape(1, -1),
radius=20)

>>> print(suggestions)
[array([657, 784, 839, 342, 446, 196], dtype=int64)]
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>>> d, suggestions = nn.radius_neighbors(test_product.reshape(1, -1),
radius=30)

>>> print(suggestions)
[ array([844, 340, 657, 943, 461, 799, 715, 863, 979, 784, 54, 148, 806,
 465, 585, 710, 839, 695, 342, 881, 864, 446, 196, 73, 663, 580, 216],
dtype=int64)]

Of course, when trying these examples, the number of suggestions can be different, as we
are using random datasets, so I suggest trying different values for the radius (in particular
when using different metrics).

When clustering with k-nearest neighbors, it's important to consider the metric adopted for
determining the distance between the samples. The default for scikit-learn is the Minkowski
distance, which is a generalization of Euclidean and Manhattan distance, and is defined as:

The parameter p controls the type of distance and the default value is 2, so that the resulting
metric is a classical Euclidean distance. Other distances are offered by SciPy (in the package
scipy.spatial.distance) and include, for example, the Hamming and Jaccard
distances. The former is defined as the disagree proportion between two vectors (if they are
binary this is the normalized number of different bits). For example:

from scipy.spatial.distance import hamming

>>> a = np.array([0, 1, 0, 0, 1, 0, 1, 1, 0, 0])
>>> b = np.array([1, 1, 0, 0, 0, 1, 1, 1, 1, 0])
>>> d = hamming(a, b)

>>> print(d)
0.40000000000000002
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It means there's a disagree proportion of 40 percent, or, considering that both vectors are
binary, there 4 different bits (out of 10). This measure can be useful when it's necessary to
emphasize the presence/absence of a particular feature.

The Jaccard distance is defined as:

It's particularly useful to measure the dissimilarity between two different sets (A and B) of
items. If our feature vectors are binary, it's immediate to apply this distance using Boolean
logic. Using the previous test values, we get:

from scipy.spatial.distance import jaccard

>>> d = jaccard(a, b)
>>> print(d)
0.5714285714285714

This measure is bounded between 0 (equal vectors) and 1 (total dissimilarity).

As for the Hamming distance, it can be very useful when it's necessary to compare items
where their representation is made up of binary states (like present/absent, yes/no, and so
forth). If you want to adopt a different metric for k-nearest neighbors, it's possible to
specify it directly using the metric parameter:

>>> nn = NearestNeighbors(n_neighbors=10, radius=5.0, metric='hamming')
>>> nn.fit(items)

>>> nn = NearestNeighbors(n_neighbors=10, radius=5.0, metric='jaccard')
>>> nn.fit(items)
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Model-free (or memory-based) collaborative
filtering
As with the user-based approach, let's consider having two sets of elements: users and
items. However, in this case, we don't assume that they have explicit features. Instead, we
try to model a user-item matrix based on the preferences of each user (rows) for each item
(columns). For example:

In this case, the ratings are bounded between 1 and 5 (0 means no rating), and our goal is to
cluster the users according to their rating vector (which is, indeed, an internal
representation based on a particular kind of feature). This allows producing
recommendations even when there are no explicit pieces of information about the user.
However, it has a drawback, called cold-startup, which means that when a new user has no
ratings, it's impossible to find the right neighborhood, because he/she can belong to
virtually any cluster.

Once the clustering is done, it's easy to check which products (not rated yet) have the higher
rating for a given user and therefore are more likely to be bought. It's possible to implement
a solution in scikit-learn as we've done before, but I'd like to introduce a small framework
called Crab (see the box at the end of this section) that simplifies this process.

In order to build the model, we first need to define the user-item matrix as a Python
dictionary with the structure:

{ user_1: { item1: rating, item2: rating, ... }, ..., user_n: ... }
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A missing value in a user internal dictionary means no rating. In our example, we consider
5 users with 5 items:

from scikits.crab.models import MatrixPreferenceDataModel

>>> user_item_matrix = {
       1: {1: 2, 2: 5, 3: 3},
       2: {1: 5, 4: 2},
       3: {2: 3, 4: 5, 3: 2},
       4: {3: 5, 5: 1},
       5: {1: 3, 2: 3, 4: 1, 5: 3}
   }

>>> model = MatrixPreferenceDataModel(user_item_matrix)

Once the user-item matrix has been defined, we need to pick a metric and therefore, a
distance function d(ui, uj), to build a similarity matrix:

Using Crab, we do this in the following way (using a Euclidean metric):

from scikits.crab.similarities import UserSimilarity
from scikits.crab.metrics import euclidean_distances

>>> similarity_matrix = UserSimilarity(model, euclidean_distances)

There are many metrics, like Pearson or Jaccard, so I suggest visiting the website (h t t p ://m

u r i c o c a . g i t h u b . i o /c r a b ) to retrieve further information. At this point, it's possible to
build the recommendation system (based on the k-nearest neighbors clustering method)
and test it:

from scikits.crab.recommenders.knn import UserBasedRecommender

>>> recommender = UserBasedRecommender(model, similarity_matrix,
with_preference=True)

>>> print(recommender.recommend(2))
[(2, 3.6180339887498949), (5, 3.0), (3, 2.5527864045000417)]
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So the recommender suggests the following predicted rating for user 2:

Item 2: 3.6 (which can be rounded to 4.0)
Item 5: 3
Item 3: 2.5 (which can be rounded to 3.0)

When running the code, it's possible to see some warnings (Crab is still under
development); however, they don't condition the functionality. If you want to avoid them,
you can use the catch_warnings() context manager:

import warnings

>>> with warnings.catch_warnings():
>>>    warnings.simplefilter("ignore")
>>>    print(recommender.recommend(2))

It's possible to suggest all the items, or limit the list to the higher ratings (so, for example,
avoiding the item 3). This approach is quite similar to the user-based model. However, it's
faster (very big matrices can be processed in parallel) and it doesn't take care of details that
can produce misleading results. Only the ratings are considered as useful features to define
a user. Like model-based collaborative filtering, the cold-startup problem can be addressed
in two ways:

Asking the user to rate some items (this approach is often adopted because it's
easy to show some movie/book covers, asking the user to select what they like
and what they don't).
Placing the user in an average neighborhood by randomly assigning some mean
ratings. In this approach, it's possible to start using the recommendation system
immediately. However, it's necessary to accept a certain degree of error at the
beginning and to correct the dummy ratings when the real ones are produced.

Crab is an open-source framework for building collaborative filtering
systems. It's still under development and therefore, doesn't implement all
possible features. However, it's very easy to use and is quite powerful for
many tasks. The home page with installation instructions and
documentation is: h t t p ://m u r i c o c a . g i t h u b . i o /c r a b /i n d e x . h t m l . Crab
depends on scikits.learn, which still has some issues with Python 3.
Therefore, I recommend using Python 2.7 for this example. It's possible to
install both packages using pip: pip install -U scikits.learn and
pip install -U crab.
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Model-based collaborative filtering
This is currently one of the most advanced approaches and is an extension of what was
already seen in the previous section. The starting point is always a rating-based user-item
matrix:

However, in this case, we assume the presence of latent factors for both the users and the
items. In other words, we define a generic user as:

A generic item is defined as:

We don't know the value of each vector component (for this reason they are called latent),
but we assume that a ranking is obtained as:

So we can say that a ranking is obtained from a latent space of rank k, where k is the number
of latent variables we want to consider in our model. In general, there are rules to determine
the right value for k, so the best approach is to check different values and test the model
with a subset of known ratings. However, there's still a big problem to solve: finding the
latent variables. There are several strategies, but before discussing them, it's important to
understand the dimensionality of our problem. If we have 1000 users and 500 products, M
has 500,000 elements. If we decide to have rank equal to 10, it means that we need to find
5000000 variables constrained by the known ratings. As you can imagine, this problem can
easily become impossible to solve with standard approaches and parallel solutions must be
employed.
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Singular Value Decomposition strategy
The first approach is based on the Singular Value Decomposition (SVD) of the user-item
matrix. This technique allows transforming a matrix through a low-rank factorization and
can also be used in an incremental way as described in Sarwar B., Karypis G., Konstan J.,
Riedl J., Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender
Systems, 2002. In particular, if the user-item matrix has m rows and n columns:

We have assumed that we have real matrices (which is often true in our case), but, in
general, they are complex. U and V are unitary, while sigma is diagonal. The columns of U
contain the left singular vectors, the rows of transposed V contain the right singular vectors,
while the diagonal matrix Sigma contains the singular values. Selecting k latent factors
means taking the first k singular values and, therefore, the corresponding k left and right
singular vectors:

This technique has the advantage of minimizing the Frobenius norm of the difference
between M and Mk for any value of k, and therefore, it's an optimal choice to approximate
the full decomposition. Before moving to the prediction stage, let's create an example using
SciPy. The first thing to do is to create a dummy user-item matrix:

>>> M = np.random.randint(0, 6, size=(20, 10))

>>> print(M)
array([[0, 4, 5, 0, 1, 4, 3, 3, 1, 3],
       [1, 4, 2, 5, 3, 3, 3, 4, 3, 1],
       [1, 1, 2, 2, 1, 5, 1, 4, 2, 5],
       [0, 4, 1, 2, 2, 5, 1, 1, 5, 5],
       [2, 5, 3, 1, 1, 2, 2, 4, 1, 1],
       [1, 4, 3, 3, 0, 0, 2, 3, 3, 5],
       [3, 5, 2, 1, 5, 3, 4, 1, 0, 2],
       [5, 2, 2, 0, 1, 0, 4, 4, 1, 0],
       [0, 2, 4, 1, 3, 1, 3, 0, 5, 4],
       [2, 5, 1, 5, 3, 0, 1, 4, 5, 2],
       [1, 0, 0, 5, 1, 3, 2, 0, 3, 5],
       [5, 3, 1, 5, 0, 0, 4, 2, 2, 2],
       [5, 3, 2, 4, 2, 0, 4, 4, 0, 3],



Introduction to Recommendation Systems

[ 234 ]

       [3, 2, 5, 1, 1, 2, 1, 1, 3, 0],
       [1, 5, 5, 2, 5, 2, 4, 5, 1, 4],
       [4, 0, 2, 2, 1, 0, 4, 4, 3, 3],
       [4, 2, 2, 3, 3, 4, 5, 3, 5, 1],
       [5, 0, 5, 3, 0, 0, 3, 5, 2, 2],
       [1, 3, 2, 2, 3, 0, 5, 4, 1, 0],
       [1, 3, 1, 4, 1, 5, 4, 4, 2, 1]])

We're assuming that we have 20 users and 10 products. The ratings are bounded between 1
and 5, and 0 means no rating. Now we can decompose M:

from scipy.linalg import svd

import numpy as np

>>> U, s, V = svd(M, full_matrices=True)
>>> S = np.diag(s)

>>> print(U.shape)
(20L, 20L)

>>> print(S.shape)
(10L, 10L)

>>> print(V.shape)
(10L, 10L)

Now let's consider only the first eight singular values, which will have eight latent factors
for both the users and items:

>>> Uk = U[:, 0:8]
>>> Sk = S[0:8, 0:8]
>>> Vk = V[0:8, :]

Bear in mind that in SciPy SVD implementation, V is already transposed. According to
Sarwar B., Karypis G., Konstan J., Riedl J., Incremental Singular Value Decomposition
Algorithms for Highly Scalable Recommender Systems, 2002, we can easily get a prediction
considering the cosine similarity (which is proportional to the dot product) between
customers and products. The two latent factor matrices are:
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In order to take into account the loss of precision, it's useful also to consider the average
rating per user (which corresponds to the mean row value of the user-item matrix), so that
the result rating prediction for the user i and the item j becomes:

Here SU(i) and SI(j) are the user and product vectors respectively. Continuing with our
example, let's determine the rating prediction for user 5 and item 2:

>>> Su = Uk.dot(np.sqrt(Sk).T)
>>> Si = np.sqrt(Sk).dot(Vk).T
>>> Er = np.mean(M, axis=1)

>>> r5_2 = Er[5] + Su[5].dot(Si[2])
>>> print(r5_2)
2.38848720112

This approach has medium complexity. In particular, the SVD is O(m3) and an incremental
strategy (as described in Sarwar B., Karypis G., Konstan J., Riedl J., Incremental Singular
Value Decomposition Algorithms for Highly Scalable Recommender Systems, 2002) must be 
employed when new users or items are added; however, it can be effective when the
number of elements is not too big. In all the other cases, the next strategy (together with a
parallel architecture) can be adopted.

Alternating least squares strategy
The problem of finding the latent factors can be easily expressed as a least square
optimization problem by defining the following loss function:
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L is limited only to known samples (user, item). The second term works as a regularization
factor and the whole problem can easily be solved with any optimization method.
However, there's an additional issue: we have two different sets of variables to determine
(user and item factors). We can solve this problem with an approach called alternating least
squares, described in Koren Y., Bell R., Volinsky C., Matrix Factorization Techniques for
Recommender Systems, IEEE Computer Magazine, 08/2009. The algorithm is very easy to
describe and can be summarized in two main iterating steps:

pi is fixed and qj is optimized
qj is fixed and pi is optimized

The algorithm stops when a predefined precision has been achieved. It can be easily
implemented with parallel strategies to be able to process huge matrices in a short time.
Moreover, considering the price of virtual clusters, it's also possible to retrain the model
periodically, to immediately (with an acceptable delay) include new products and users.

Alternating least squares with Apache Spark
MLlib
Apache Spark is beyond the scope of this book, so if you want to know more about this
powerful framework, I suggest you read the online documentation or one the many books
available. In Pentreath N., Machine Learning with Spark, Packt, there's an interesting
introduction on the library MLlib and how to implement most of the algorithms discussed
in this book.

Spark is a parallel computational engine that is now part of the Hadoop project (even if it
doesn't use its code), that can run in local mode or on very large clusters (with thousands of
nodes), to execute complex tasks using huge amounts of data. It's mainly based on Scala,
though there are interfaces for Java, Python, and R. In this example, we're going to use
PySpark, which is the built-in shell for running Spark with Python code.
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After launching PySpark in local mode, we get a standard Python prompt and we can start
working, just like with any other standard Python environment:

# Linux
>>> ./pyspark

# Mac OS X
>>> pyspark

# Windows
>>> pyspark

Python 2.7.12 |Anaconda 4.0.0 (64-bit)| (default, Jun 29 2016, 11:07:13)
[MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
Using Spark's default log4j profile: org/apache/spark/log4j-
defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevewl(newLevel).
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/\_,_/_/ /_/\_\ version 2.0.2
 /_/

Using Python version 2.7.12 (default, Jun 29 2016 11:07:13)
SparkSession available as 'spark'.
>>>

Spark MLlib implements the ALS algorithm through a very simple mechanism. The class
Rating is a wrapper for the tuple (user, product, rating), so we can easily define a dummy
dataset (which must be considered only as an example, because it's very limited):

from pyspark.mllib.recommendation import Rating

import numpy as np

>>> nb_users = 200
>>> nb_products = 100

>>> ratings = []

>>> for _ in range(10):
>>>    for i in range(nb_users):
>>>        rating = Rating(user=i,
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>>>                        product=np.random.randint(1, nb_products),
>>>                        rating=np.random.randint(0, 5))
>>>        ratings.append(rating)

>>> ratings = sc.parallelize(ratings)

We assumed that we have 200 users and 100 products and we have populated a list of
ratings by iterating 10 times the main loop which assigns a rating to a random product.
We're not controlling repetitions or other uncommon situations. The last command
sc.parallelize() is a way to ask Spark to transform our list into a structure called
resilient distributed dataset (RDD), which will be used for the remaining operations. There
are no actual limits to the size of these structures, because they are distributed across
different executors (if in clustered mode) and can work with petabytes datasets just like we
work with kilobytes ones.

At this point, we can train an ALS model (which is formally MatrixFactorizationModel)
and use it to make some predictions:

from pyspark.mllib.recommendation import ALS

>>> model = ALS.train(ratings, rank=5, iterations=10)

We want 5 latent factors and 10 optimization iterations. As discussed before, it's not very
easy to determine the right rank for each model, so, after a training phase, there should
always be a validation phase with known data. The mean squared error is a good measure
to understand how the model is working. We can do it using the same training data set. The
first thing to do is to remove the ratings (because we need only the tuple made up of user
and product):

>>> test = ratings.map(lambda rating: (rating.user, rating.product))

If you're not familiar with the MapReduce paradigm, you only need to know that map()
applies the same function (in this case, a lambda) to all the elements. Now we can massively
predict the ratings:

>>> predictions = model.predictAll(test)

However, in order to compute the error, we also need to add the user and product, to have
tuples that can be compared:

>>> full_predictions = predictions.map(lambda pred: ((pred.user,
pred.product), pred.rating))
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The result is a sequence of rows with a structure ((user, item), rating), just like a
standard dictionary entry (key, value). This is useful because, using Spark, we can join
two RDDs by using their keys. We do the same thing for the original dataset also, and then
we proceed by joining the training values with the predictions:

>>> split_ratings = ratings.map(lambda rating: ((rating.user,
rating.product), rating.rating))
>>> joined_predictions = split_ratings.join(full_predictions)

Now for each key (user, product), we have two values: target and prediction.
Therefore, we can compute the mean squared error:

>>> mse = joined_predictions.map(lambda x: (x[1][0] - x[1][1]) ** 2).mean()

The first map transforms each row into the squared difference between the target and
prediction, while the mean() function computes the average value. At this point, let's check
our error and produce a prediction:

>>> print('MSE: %.3f' % mse)
MSE: 0.580

>>> prediction = model.predict(10, 20)
>>> print('Prediction: %3.f' % prediction)
Prediction: 2.810

So, our error is quite low but it can be improved by changing the rank or the number of
iterations. The prediction for the rating of the product 20 by the user 10 is about 2.8 (that can
be rounded to 3). If you run the code, these values can be different as we're using a random
user-item matrix. Moreover, if you don't want to use the shell and run the code directly, you
need to declare a SparkContext explicitly at the beginning of your file:

from pyspark import SparkContext, SparkConf

>>> conf = SparkConf().setAppName('ALS').setMaster('local[*]')
>>> sc = SparkContext(conf=conf)



Introduction to Recommendation Systems

[ 240 ]

We have created a configuration through the SparkConf class and specified both an
application name and a master (in local mode with all cores available). This is enough to
run our code. However, if you need further information, visit the page mentioned in the
information box at the end of the chapter. To run the application (since Spark 2.0), you must
execute the following command:

# Linux, Mac OSx
./spark-submit als_spark.py

# Windows
spark-submit als_spark.py

When running a script using spark-submit, you will see hundreds of log
lines that inform you about all the operations that are being performed.
Among them, at the end of the computation, you'll also see the print
function messages (stdout).

Of course, this is only an introduction to Spark ALS, but I hope it was useful to understand
how easy this process can be and, at the same time, how the dimensional limitations can be 
effectively addressed.

If you don't know how to set up the environment and launch PySpark, I
suggest reading the online quick-start guide (h t t p s ://s p a r k . a p a c h e . o r g

/d o c s /2. 1. 0/q u i c k - s t a r t . h t m l ) that can be useful even if you don't
know all the details and configuration parameters.
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Summary
In this chapter, we discussed the main techniques for building a recommender system. In a
user-based scenario, we assume that we have enough pieces of information about the users
to be able to cluster them, and moreover, we implicitly assume that similar users would like
the same products. In this way, it's immediate to determine the neighborhood of every new
user and to suggest the products positively rated by his/her peers. In a similar way, a
content-based scenario is based on the clustering of products according to their peculiar
features. In this case, the assumption is weaker, because it's more probable that a user who
bought an item or rated it positively will do the same with similar products.

Then we introduced collaborative filtering, which is a technique based on explicit ratings,
used to predict all missing values for all users and products. In the memory-based variant,
we don't train a model but we try to work directly with a user-product matrix, looking for
the k-nearest neighbors of a test user, and computing the ranking through an average. This
approach is very similar to the user-based scenario and has the same limitations; in
particular, it's very difficult to manage large matrices. On the other hand, the model-based
approach is more complex, but, after training the model, it can predict the ratings in real
time. Moreover, there are parallel frameworks like Spark, which can be employed to
process a huge amount of data using a cluster of cheap servers.

In the next chapter, we're going to introduce some natural language processing techniques,
which are very important when automatically classifying texts or working with machine
translation systems.



12
Introduction to Natural
Language Processing

Natural language processing is a set of machine learning techniques that allows working
with text documents, considering their internal structure and the distribution of words. In
this chapter, we're going to discuss all common methods to collect texts, split them into
atoms, and transform them into numerical vectors. In particular, we'll compare different
methods to tokenize documents (separate each word), to filter them, to apply special
transformations to avoid inflected or conjugated forms, and finally to build a common
vocabulary. Using the vocabulary, it will be possible to apply different vectorization
approaches to build feature vectors that can easily be used for classification or clustering
purposes. To show how to implement the whole pipeline, at the end of the chapter, we're
going to set up a simple classifier for news lines.

NLTK and built-in corpora
Natural Language Toolkit (NLTK) is a very powerful Python framework that implements
most NLP algorithms and will be adopted in this chapter together with scikit-learn.
Moreover, NLTK provides some built-in corpora that can be used to test algorithms. Before
starting to work with NLTK, it's normally necessary to download all the additional
elements (corpora, dictionaries, and so on) using a specific graphical interface. This can be
done in the following way:

import nltk

>>> nltk.download()
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This command will launch the user interface, as shown in the following figure:

It's possible to select every single feature or download all elements (I suggest this option if
you have enough free space) to immediately exploit all NLTK functionalities.

NLTK can be installed using pip (pip install -U nltk) or with one of
the binary distributions available at h t t p ://w w w . n l t k . o r g . On the same
website, there's complete documentation that can be useful for going
deeper into each topic.
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Corpora examples
A subset of the Gutenberg project is provided and can be freely accessed in this way:

from nltk.corpus import gutenberg

>>> print(gutenberg.fileids())
[u'austen-emma.txt', u'austen-persuasion.txt', u'austen-sense.txt',
u'bible-kjv.txt', u'blake-poems.txt', u'bryant-stories.txt', u'burgess-
busterbrown.txt', u'carroll-alice.txt', u'chesterton-ball.txt',
u'chesterton-brown.txt', u'chesterton-thursday.txt', u'edgeworth-
parents.txt', u'melville-moby_dick.txt', u'milton-paradise.txt',
u'shakespeare-caesar.txt', u'shakespeare-hamlet.txt', u'shakespeare-
macbeth.txt', u'whitman-leaves.txt']

A single document can be accessed as a raw version or split into sentences or words:

>>> print(gutenberg.raw('milton-paradise.txt'))
[Paradise Lost by John Milton 1667]

Book I

Of Man's first disobedience, and the fruit
Of that forbidden tree whose mortal taste
Brought death into the World, and all our woe,
With loss of Eden, till one greater Man
Restore us, and regain the blissful seat,
Sing, Heavenly Muse, that, on the secret top...

>>> print(gutenberg.sents('milton-paradise.txt')[0:2])
[[u'[', u'Paradise', u'Lost', u'by', u'John', u'Milton', u'1667', u']'],
[u'Book', u'I']]

>>> print(gutenberg.words('milton-paradise.txt')[0:20])
[u'[', u'Paradise', u'Lost', u'by', u'John', u'Milton', u'1667', u']',
u'Book', u'I', u'Of', u'Man', u"'", u's', u'first', u'disobedience', u',',
u'and', u'the', u'fruit']
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As we're going to discuss, in many cases, it can be useful to have the raw text so as to split it
into words using a custom strategy. In many other situations, accessing sentences directly
allows working with the original structural subdivision. Other corpora include web texts,
Reuters news lines, the Brown corpus, and many more. For example, the Brown corpus is a
famous collection of documents divided by genre:

from nltk.corpus import brown

>>> print(brown.categories())
[u'adventure', u'belles_lettres', u'editorial', u'fiction', u'government',
u'hobbies', u'humor', u'learned', u'lore', u'mystery', u'news',
u'religion', u'reviews', u'romance', u'science_fiction']

>>> print(brown.sents(categories='editorial')[0:100])
[[u'Assembly', u'session', u'brought', u'much', u'good'], [u'The',
u'General', u'Assembly', u',', u'which', u'adjourns', u'today', u',',
u'has', u'performed', u'in', u'an', u'atmosphere', u'of', u'crisis',
u'and', u'struggle', u'from', u'the', u'day', u'it', u'convened', u'.'],
...]

Further information about corpora can be found at h t t p ://w w w . n l t k . o r g

/b o o k /c h 02. h t m l .

The bag-of-words strategy
In NLP, a very common pipeline can be subdivided into the following steps:

Collecting a document into a corpus.1.
Tokenizing, stopword (articles, prepositions and so on) removal, and stemming2.
(reduction to radix-form).
Building a common vocabulary.3.
Vectorizing the documents.4.
Classifying or clustering the documents.5.
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The pipeline is called bag-of-words and will be discussed in this chapter. A fundamental
assumption is that the order of each single word in a sentence is not important. In fact,
when defining a feature vector, as we're going to see, the measures taken into account are
always related to frequencies and therefore they are insensitive to the local positioning of all
elements. From some viewpoints, this is a limitation because in a natural language the
internal order of a sentence is necessary to preserve the meaning; however, there are many
models that can work efficiently with texts without the complication of local sorting. When
it's absolutely necessary to consider small sequences, it will be done by adopting groups of
tokens (called n-grams) but considering them as a single atomic element during the
vectorization step.

In the following figure, there's a schematic representation of this process (without the fifth
step) for a sample document (sentence):

There are many different methods used to carry out each step and some of them are
context-specific. However, the goal is always the same: maximizing the information of a
document and reducing the size of the common vocabulary by removing terms that are too
frequent or derived from the same radix (such as verbs). The information content of a
document is in fact determined by the presence of specific terms (or group of terms) whose
frequency in the corpus is limited. In the example shown in the previous figure, fox and
dog are important terms, while the is useless (often called a stopword). Moreover, jumps
can be converted to the standard form jump, which expresses a specific action when present
in different forms (like jumping or jumped). The last step is transforming into a numerical
vector, because our algorithms work with numbers, and it's important to limit the length of
the vectors so as to improve the learning speed and the memory consumption. In the
following sections, we're going to discuss each step in detail, and at the end, we're going to
build a sample classifier for news lines.
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Tokenizing
The first step in processing a piece of text or a corpus is splitting it into atoms (sentences,
words, or parts of words), normally defined as tokens. Such a process is quite simple;
however, there can be different strategies to solve particular problems.

Sentence tokenizing
In many cases, it's useful to split large text into sentences, which are normally delimited by
a full stop or another equivalent mark. As every language has its own orthographic rules,
NLTK offers a method called sent_tokenize() that accepts a language (the default is
English) and splits the text according to the specific rules. In the following example, we
show the usage of this function with different languages:

from nltk.tokenize import sent_tokenize

>>> generic_text = 'Lorem ipsum dolor sit amet, amet minim temporibus in
sit. Vel ne impedit consequat intellegebat.'

>>> print(sent_tokenize(generic_text))
['Lorem ipsum dolor sit amet, amet minim temporibus in sit.',
 'Vel ne impedit consequat intellegebat.']

>>> english_text = 'Where is the closest train station? I need to reach
London'

>>> print(sent_tokenize(english_text, language='english'))
['Where is the closest train station?', 'I need to reach London']

>>> spanish_text = u'¿Dónde está la estación más cercana? Inmediatamente me
tengo que ir a Barcelona.'

>>> for sentence in sent_tokenize(spanish_text, language='spanish'):
>>>    print(sentence)
¿Dónde está la estación más cercana?
Inmediatamente me tengo que ir a Barcelona.
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Word tokenizing
The simplest way to tokenize a sentence into words is provided by the class
TreebankWordTokenizer, which, however, has some limitations:

from nltk.tokenize import TreebankWordTokenizer

>>> simple_text = 'This is a simple text.'

>>> tbwt = TreebankWordTokenizer()

>>> print(tbwt.tokenize(simple_text))
['This', 'is', 'a', 'simple', 'text', '.']

>>> complex_text = 'This isn\'t a simple text'

>>> print(tbwt.tokenize(complex_text))
['This', 'is', "n't", 'a', 'simple', 'text']

As you can see, in the first case the sentence has been correctly split into words, keeping the
punctuation separate (this is not a real issue because it can be removed in a second step).
However, in the complex example, the contraction isn't has been split into is and n't.
Unfortunately, without a further processing step, it's not so easy converting a token with a
contraction into its normal form (like not ), therefore, another strategy must be employed.
A good way to solve the problem of separate punctuation is provided by the class
RegexpTokenizer, which offers a flexible way to split words according to a regular
expression:

from nltk.tokenize import RegexpTokenizer

>>> complex_text = 'This isn\'t a simple text.'

>>> ret = RegexpTokenizer('[a-zA-Z0-9\'\.]+')
>>> print(ret.tokenize(complex_text))
['This', "isn't", 'a', 'simple', 'text.']

Most of the common problems can be easily solved using this class, so I suggest you learn
how to write simple regular expressions that can match specific patterns. For example, we
can remove all numbers, commas, and other punctuation marks from a sentence:

>>> complex_text = 'This isn\'t a simple text. Count 1, 2, 3 and then go!'

>>> ret = RegexpTokenizer('[a-zA-Z\']+')
>>> print(ret.tokenize(complex_text))
['This', "isn't", 'a', 'simple', 'text', 'Count', 'and', 'the', 'go']
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Even if there are other classes provided by NLTK, they can always be implemented using a
customized RegexpTokenizer, which is powerful enough to solve almost every particular
problem; so I prefer not to go deeper in this discussion.

Stopword removal
Stopwords are part of a normal speech (articles, conjunctions, and so on), but their
occurrence frequency is very high and they don't provide any useful semantic information.
For these reasons, it's a good practice to filter sentences and corpora by removing them all.
NLTK provides lists of stopwords for the most common languages and their usage is
immediate:

from nltk.corpus import stopwords

>>> sw = set(stopwords.words('english'))

A subset of English stopwords is shown in the following snippet:

>>> print(sw)
{u'a',
 u'about',
 u'above',
 u'after',
 u'again',
 u'against',
 u'ain',
 u'all',
 u'am',
 u'an',
 u'and',
 u'any',
 u'are',
 u'aren',
 u'as',
 u'at',
 u'be', ...
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To filter a sentence, it's possible to adopt a functional approach:

>>> complex_text = 'This isn\'t a simple text. Count 1, 2, 3 and then go!'

>>> ret = RegexpTokenizer('[a-zA-Z\']+')
>>> tokens = ret.tokenize(complex_text)
>>> clean_tokens = [t for t in tokens if t not in sw]
>>> print(clean_tokens)
['This', "isn't", 'simple', 'text', 'Count', 'go']

Language detection
Stopwords, like other important features, are strictly related to a specific language, so it's
often necessary to detect the language before moving on to any other step. A simple, free,
and reliable solution is provided by the langdetect library, which has been ported from
Google's language detection system. Its usage is immediate:

from langdetect import detect

>>> print(detect('This is English'))
en

>>> print(detect('Dies ist Deutsch'))
de

The function returns the ISO 639-1 codes (h t t p s ://e n . w i k i p e d i a . o r g /w i k i /L i s t _ o f _ I S O

_ 639- 1_ c o d e s ), which can be used as keys in a dictionary to get the complete language
name. Where the text is more complex, the detection can more difficult and it's useful to
know whether there are any ambiguities. It's possible to get the probabilities for the
expected languages through the detect_langs() method:

from langdetect import detect_langs

>>> print(detect_langs('I really love you mon doux amour!'))
[fr:0.714281321163, en:0.285716747181]

langdetect can be installed using pip (pip install --upgrade
langdetect). Further information is available at h t t p s ://p y p i . p y t h o n . o

r g /p y p i /l a n g d e t e c t .
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Stemming
Stemming is a process that is used to transform particular words (such as verbs or plurals)
into their radical form so as to preserve the semantics without increasing the number of
unique tokens. For example, if we consider the three expressions I run, He runs, and
Running, they can be reduced into a useful (though grammatically incorrect) form: I run,
He run, Run. In this way, we have a single token that defines the same concept (run),
which, for clustering or classification purposes, can be used without any precision loss.
There are many stemmer implementations provided by NLTK. The most common (and
flexible) is SnowballStemmer, based on a multilingual algorithm:

from nltk.stem.snowball import SnowballStemmer

>>> ess = SnowballStemmer('english', ignore_stopwords=True)
>>> print(ess.stem('flies'))
fli

>>> fss = SnowballStemmer('french', ignore_stopwords=True)
>>> print(fss.stem('courais'))
cour

The ignore_stopwords parameter informs the stemmer not to process the stopwords.
Other implementations are PorterStemmer and LancasterStemmer. Very often the result
is the same, but in some cases, a stemmer can implement more selective rules. For example:

from nltk.stem.snowball import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer

>>> print(ess.stem('teeth'))
teeth

>>> ps = PorterStemmer()
>>> print(ps.stem('teeth'))
teeth

>>> ls = LancasterStemmer()
>>> print(ls.stem('teeth'))
tee
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As you can see, Snowball and Porter algorithms keep the word unchanged, while Lancaster
extracts a radix (which is meaningless). On the other hand, the latter algorithm implements
many specific English rules, which can really reduce the number of unique tokens:

>>> print(ps.stem('teen'))
teen

>>> print(ps.stem('teenager'))
teenag

>>> print(ls.stem('teen'))
teen

>>> print(ls.stem('teenager'))
teen

Unfortunately, both Porter and Lancaster stemmers are available in NLTK only in English;
so the default choice is often Snowball, which is available in many languages and can be
used in conjunction with an appropriate stopword set.

Vectorizing
This is the last step of the bag-of-words pipeline and it is necessary for transforming text
tokens into numerical vectors. The most common techniques are based on a count or
frequency computation, and they are both available in scikit-learn with sparse matrix
representations (this is a choice that can save a lot of space considering that many tokens
appear only a few times while the vectors must have the same length).

Count vectorizing
The algorithm is very simple and it's based on representing a token considering how many
times it appears in a document. Of course, the whole corpus must be processed in order to
determine how many unique tokens are present and their frequencies. Let's see an example
of the CountVectorizer class on a simple corpus:

from sklearn.feature_extraction.text import CountVectorizer

>>> corpus = [
       'This is a simple test corpus',
       'A corpus is a set of text documents',
       'We want to analyze the corpus and the documents',
       'Documents can be automatically tokenized'
]
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>>> cv = CountVectorizer()
>>> vectorized_corpus = cv.fit_transform(corpus)
>>> print(vectorized_corpus.todense())
[[0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0]
 [0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0]
 [1 1 0 0 0 1 1 0 0 0 0 0 0 2 0 1 0 1 1]
 [0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0]]

As you can see, each document has been transformed into a fixed-length vector, where 0
means that the corresponding token is not present, while a positive number represents the
occurrences. If we need to exclude all tokens whose document frequency is less than a
predefined value, we can set it through the parameter min_df (the default value is 1).
Sometimes it can be useful to avoid terms that are very common; however, the next strategy
will manage this problem in a more reliable and complete way.

The vocabulary can be accessed through the instance variable vocabulary_:

>>> print(cv.vocabulary_)
{u'and': 1, u'be': 3, u'we': 18, u'set': 9, u'simple': 10, u'text': 12,
u'is': 7, u'tokenized': 16, u'want': 17, u'the': 13, u'documents': 6,
u'this': 14, u'of': 8, u'to': 15, u'can': 4, u'test': 11, u'corpus': 5,
u'analyze': 0, u'automatically': 2}

Given a generic vector, it's possible to retrieve the corresponding list of tokens with an
inverse transformation:

>>> vector = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1]
>>> print(cv.inverse_transform(vector))
[array([u'corpus', u'is', u'simple', u'test', u'this', u'want', u'we'],
       dtype='<U13')]

Both this and the following method can also use an external tokenizer (through the
parameter tokenizer), it can be customized using the techniques discussed in previous
sections:

>>> ret = RegexpTokenizer('[a-zA-Z0-9\']+')
>>> sw = set(stopwords.words('english'))
>>> ess = SnowballStemmer('english', ignore_stopwords=True)

>>> def tokenizer(sentence):
>>>    tokens = ret.tokenize(sentence)
>>>    return [ess.stem(t) for t in tokens if t not in sw]

>>> cv = CountVectorizer(tokenizer=tokenizer)
>>> vectorized_corpus = cv.fit_transform(corpus)
>>> print(vectorized_corpus.todense())
[[0 0 1 0 0 1 1 0 0 0]
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 [0 0 1 1 1 0 0 1 0 0]
 [1 0 1 1 0 0 0 0 0 1]
 [0 1 0 1 0 0 0 0 1 0]]

With our tokenizer (using stopwords and stemming), the vocabulary is shorter and so are
the vectors.

N-grams
So far, we have considered only single tokens (also called unigrams), but in many contexts,
it's useful to consider short sequences of words (bigrams or trigrams) as atoms for our
classifiers, just like all the other tokens. For example, if we are analyzing the sentiment of
some texts, it could be a good idea to consider bigrams such as pretty good, very bad,
and so on. From a semantic viewpoint, in fact, it's important to consider not just the adverbs
but the whole compound form. It's possible to inform our vectorizers about the range of n-
grams we want to consider. For example, if we need unigrams and bigrams, we can use this
snippet:

>>> cv = CountVectorizer(tokenizer=tokenizer, ngram_range=(1, 2))
>>> vectorized_corpus = cv.fit_transform(corpus)
>>> print(vectorized_corpus.todense())
[[0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0]
 [0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0]
 [1 1 0 0 0 1 1 0 0 0 0 0 0 2 0 1 0 1 1]
 [0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0]]

>>> print(cv.vocabulary_)
{u'and': 1, u'be': 3, u'we': 18, u'set': 9, u'simple': 10, u'text': 12,
u'is': 7, u'tokenized': 16, u'want': 17, u'the': 13, u'documents': 6,
u'this': 14, u'of': 8, u'to': 15, u'can': 4, u'test': 11, u'corpus': 5,
u'analyze': 0, u'automatically': 2}

As you can see, the vocabulary now contains the bigrams, and the vectors include their
relative frequencies.
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Tf-idf vectorizing
The most common limitation of count vectorizing is that the algorithm doesn't consider the
whole corpus while considering the frequency of each token. The goal of vectorizing is
normally preparing the data for a classifier; therefore it's necessary to avoid features that are
present very often, because their information decreases when the number of global
occurrences increases. For example, in a corpus about a sport, the word match could be
present in a huge number of documents; therefore it's almost useless as a classification
feature. To address this issue, we need a different approach. If we have a corpus C with n
documents, we define term-frequency, the number of times a token occurs in a document,
as:

We define inverse-document-frequency, as the following measure:

In other words, idf(t,C) measures how much information is provided by every single
term. In fact, if count(D,t) = n, it means that a token is always present and idf(t, C) comes
close to 0, and vice-versa. The term 1 in the denominator is a correction factor, which avoids
null idf for count(D,t) = n. So, instead of considering only the term frequency, we weigh
each token by defining a new measure:

scikit-learn provides the TfIdfVectorizer class, which we can apply to the same toy
corpus used in the previous paragraph:

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> tfidfv = TfidfVectorizer()
>>> vectorized_corpus = tfidfv.fit_transform(corpus)
>>> print(vectorized_corpus.todense())
[[ 0.          0.          0.          0.          0.          0.31799276
   0.          0.39278432  0.          0.          0.49819711  0.49819711
   0.          0.          0.49819711  0.          0.          0.
0.        ]
 [ 0.          0.          0.          0.          0.          0.30304005
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   0.30304005  0.37431475  0.4747708   0.4747708   0.          0.
   0.4747708   0.          0.          0.          0.          0.
0.        ]
 [ 0.31919701  0.31919701  0.          0.          0.          0.20373932
   0.20373932  0.          0.          0.          0.          0.
0.
   0.63839402  0.          0.31919701  0.          0.31919701  0.31919701]
 [ 0.          0.          0.47633035  0.47633035  0.47633035  0.
   0.30403549  0.          0.          0.          0.          0.
0.
   0.          0.          0.          0.47633035  0.          0.        ]]

Let's now check the vocabulary to make a comparison with simple count vectorizing:

>>> print(tfidfv.vocabulary_)
{u'and': 1, u'be': 3, u'we': 18, u'set': 9, u'simple': 10, u'text': 12,
u'is': 7, u'tokenized': 16, u'want': 17, u'the': 13, u'documents': 6,
u'this': 14, u'of': 8, u'to': 15, u'can': 4, u'test': 11, u'corpus': 5,
u'analyze': 0, u'automatically': 2}

The term documents is the sixth feature in both vectorizers and appears in the last three
documents. As you can see, it's weight is about 0.3, while the term the is present twice only
in the third document and its weight is about 0.64. The general rule is: if a term is
representative of a document, its weight becomes close to 1.0, while it decreases if finding it
in a sample document doesn't allow us to easily determine its category.

Also in this case, it's possible to use an external tokenizer and specify the desired n-gram
range. Moreover, it's possible to normalize the vectors (through the parameter norm) and
decide whether to include or exclude the addend 1 to the denominator of idf (through the
parameter smooth_idf). It's also possible to define the range of accepted document
frequencies using the parameters min_df and max_df so as to exclude tokens whose
occurrences are below or beyond a minimum/maximum threshold. They accept both
integers (number of occurrences) or floats in the range of [0.0, 1.0] (proportion of
documents). In the next example, we use some of these parameters:

>>> tfidfv = TfidfVectorizer(tokenizer=tokenizer, ngram_range=(1, 2),
norm='l2')
>>> vectorized_corpus = tfidfv.fit_transform(corpus)
>>> print(vectorized_corpus.todense())
[[ 0.          0.          0.          0.          0.30403549  0.
0.
   0.          0.          0.          0.          0.47633035  0.47633035
   0.47633035  0.47633035  0.          0.          0.          0.
0.        ]
 [ 0.          0.          0.          0.          0.2646963   0.
   0.4146979   0.2646963   0.          0.4146979   0.4146979   0.
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0.
   0.          0.          0.4146979   0.4146979   0.          0.
0.        ]
 [ 0.4146979   0.4146979   0.          0.          0.2646963   0.4146979
   0.          0.2646963   0.          0.          0.          0.
0.
   0.          0.          0.          0.          0.          0.4146979
   0.4146979 ]
 [ 0.          0.          0.47633035  0.47633035  0.          0.
0.
   0.30403549  0.47633035  0.          0.          0.          0.
0.
   0.          0.          0.          0.47633035  0.          0.        ]]

>>> print(tfidfv.vocabulary_)
{u'analyz corpus': 1, u'set': 9, u'simpl test': 12, u'want analyz': 19,
u'automat': 2, u'want': 18, u'test corpus': 14, u'set text': 10, u'corpus
set': 6, u'automat token': 3, u'corpus document': 5, u'text document': 16,
u'token': 17, u'document automat': 8, u'text': 15, u'test': 13, u'corpus':
4, u'document': 7, u'simpl': 11, u'analyz': 0}

In particular, normalizing vectors is always a good choice if they must be used as input for
a classifier, as we'll see in the next chapter.

A sample text classifier based on the
Reuters corpus
We are going to build a sample text classifier based on the NLTK Reuters corpus. This one
is made of up thousands of news lines divided into 90 categories:

from nltk.corpus import reuters

>>> print(reuters.categories())
[u'acq', u'alum', u'barley', u'bop', u'carcass', u'castor-oil', u'cocoa',
u'coconut', u'coconut-oil', u'coffee', u'copper', u'copra-cake', u'corn',
u'cotton', u'cotton-oil', u'cpi', u'cpu', u'crude', u'dfl', u'dlr', u'dmk',
u'earn', u'fuel', u'gas', u'gnp', u'gold', u'grain', u'groundnut',
u'groundnut-oil', u'heat', u'hog', u'housing', u'income', u'instal-debt',
u'interest', u'ipi', u'iron-steel', u'jet', u'jobs', u'l-cattle', u'lead',
u'lei', u'lin-oil', u'livestock', u'lumber', u'meal-feed', u'money-fx',
u'money-supply', u'naphtha', u'nat-gas', u'nickel', u'nkr', u'nzdlr',
u'oat', u'oilseed', u'orange', u'palladium', u'palm-oil', u'palmkernel',
u'pet-chem', u'platinum', u'potato', u'propane', u'rand', u'rape-oil',
u'rapeseed', u'reserves', u'retail', u'rice', u'rubber', u'rye', u'ship',
u'silver', u'sorghum', u'soy-meal', u'soy-oil', u'soybean', u'strategic-
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metal', u'sugar', u'sun-meal', u'sun-oil', u'sunseed', u'tea', u'tin',
u'trade', u'veg-oil', u'wheat', u'wpi', u'yen', u'zinc']

To simplify the process, we'll take only two categories, which have a similar number of
documents:

import numpy as np

>>> Xr = np.array(reuters.sents(categories=['rubber']))
>>> Xc = np.array(reuters.sents(categories=['cotton']))
>>> Xw = np.concatenate((Xr, Xc))

As each document is already split into tokens and we want to apply our custom tokenizer
(with stopword removal and stemming), we need to rebuild the full sentences:

>>> X = []

>>> for document in Xw:
>>>    X.append(' '.join(document).strip().lower())

Now we need to prepare the label vector, by assigning 0 to rubber and 1 to cotton:

>>> Yr = np.zeros(shape=Xr.shape)
>>> Yc = np.ones(shape=Xc.shape)
>>> Y = np.concatenate((Yr, Yc))

At this point, we can vectorize our corpus:

>>> tfidfv = TfidfVectorizer(tokenizer=tokenizer, ngram_range=(1, 2),
norm='l2')
>>> Xv = tfidfv.fit_transform(X)

Now the dataset is ready, and we can proceed by splitting it into train and test subsets and
finally train our classifier. I've decided to adopt a random forest because it's particularly
efficient for this kind of task, but the reader can try different classifiers and compare the
results:

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

>>> X_train, X_test, Y_train, Y_test = train_test_split(Xv, Y,
test_size=0.25)

>>> rf = RandomForestClassifier(n_estimators=25)
>>> rf.fit(X_train, Y_train)
>>> score = rf.score(X_test, Y_test)
>>> print('Score: %.3f' % score)
Score: 0.874
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The score is about 88%, which is a quite good result, but let's try a prediction with a fake
news line:

>>> test_newsline = ['Trading tobacco is reducing the amount of requests
for cotton and this has a negative impact on our economy']

>>> yvt = tfidfv.transform(test_newsline)
>>> category = rf.predict(yvt)
>>> print('Predicted category: %d' % int(category[0]))
Predicted category: 1

The classification result is correct; however, by adopting some techniques that we're going
to discuss in the next chapter, it's also possible to get better performance in more complex
real-life problems.
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Summary
In this chapter, we discussed all the basic NLP techniques, starting from the definition of a
corpus up to the final transformation into feature vectors. We analyzed different tokenizing
methods to address particular problems or situations of splitting a document into words.
Then we introduced some filtering techniques that are necessary to remove all useless
elements (also called stopwords) and to convert the inflected forms into standard tokens.
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These steps are important in order to increase the information content by removing
frequently used terms. When the documents have been successfully cleaned, it is possible to
vectorize them using a simple approach such as the one implemented by the count-
vectorizer, or a more complex one that takes into account the global distribution of terms,
such as tf-idf. The latter was introduced to complete the work done by the stemming phase;
in fact, it's purpose is to define vectors where each component will be close to 1 when the
amount of information is high and vice-versa. Normally a word that is present in many
documents isn't a good marker for a classifier; therefore, if not already removed by the
previous steps, tf-idf will automatically reduce its weight. At the end of the chapter, we
built a simple text classifier that implements the whole bag-of-words pipeline and uses a
random forest to classify news lines.

In the next chapter, we're going to complete this introduction with a brief discussion of
advanced techniques such as topic modeling, latent semantic analysis, and sentiment
analysis.



13
Topic Modeling and Sentiment

Analysis in NLP
In this chapter, we're going to introduce some common topic modeling methods, discussing
some applications. Topic modeling is a very important NLP section and its purpose is to
extract semantic pieces of information out of a corpus of documents. We're going to discuss
latent semantic analysis, one of most famous methods; it's based on the same philosophy
already discussed for model-based recommendation systems. We'll also discuss its
probabilistic variant, PLSA, which is aimed at building a latent factor probability model
without any assumption of prior distributions. On the other hand, the Latent Dirichlet
Allocation is a similar approach that assumes a prior Dirichlet distribution for latent
variables. In the last section, we're going to discuss sentiment analysis with a concrete
example based on a Twitter dataset.

Topic modeling
The main goal of topic modeling in natural language processing is to analyze a corpus in
order to identify common topics among documents. In this context, even if we talk about
semantics, this concept has a particular meaning, driven by a very important assumption. A
topic derives from the usage of particular terms in the same document and it is confirmed
by the multiplicity of different documents where the first condition is true.
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In other words, we don't consider a human-oriented semantics but a statistical modeling
that works with meaningful documents (this guarantees that the usage of terms is aimed to
express a particular concept and, therefore, there's a human semantic purpose behind
them). For this reason, the starting point of all our methods is an occurrence matrix,
normally defined as a document-term matrix (we have already discussed count vectorizing
and tf-idf in Chapter 12, Introduction to NLP):

In many papers, this matrix is transposed (it's a term-document one); however, scikit-learn
produces document-term matrices, and, to avoid confusion, we are going to consider this
structure.

Latent semantic analysis
The idea behind latent semantic analysis is factorizing Mdw so as to extract a set of latent
variables (this means that we can assume their existence but they cannot be observed
directly) that work as connectors between the document and terms. As discussed in Chapter
11, Introduction to Recommendation Systems, a very common decomposition method is SVD:

However, we're not interested in a full decomposition; we are interested only in the
subspace defined by the top k singular values:
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This approximation has the reputation of being the best one considering the Frobenius
norm, so it guarantees a very high level of accuracy. When applying it to a document-term
matrix, we obtain the following decomposition:

Or, in a more compact way:

Here, the first matrix defines a relationship among documents and k latent variables, and
the second a relationship among k latent variables and words. Considering the structure of
the original matrix and what is explained at the beginning of this chapter, we can consider
the latent variables as topics that define a subspace where the documents are projected. A
generic document can now be defined as:

Furthermore, each topic becomes a linear combination of words. As the weight of many
words is close to zero, we can decide to take only the top r words to define a topic;
therefore, we get:
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Here, each hji is obtained after sorting the columns of Mtwk. To better understand the process,
let's show a complete example based on a subset of Brown corpus (500 documents from the
news category):

from nltk.corpus import brown

>>> sentences = brown.sents(categories=['news'])[0:500]
>>> corpus = []

>>> for s in sentences:
>>>   corpus.append(' '.join(s))

After defining the corpus, we need to tokenize and vectorize using a tf-idf approach:

from sklearn.feature_extraction.text import TfidfVectorizer

>>> vectorizer = TfidfVectorizer(strip_accents='unicode',
stop_words='english', norm='l2', sublinear_tf=True)
>>> Xc = vectorizer.fit_transform(corpus).todense()

Now it's possible to apply an SVD to the Xc matrix (remember that in SciPy, the V matrix is
already transposed):

from scipy.linalg import svd

>>> U, s, V = svd(Xc, full_matrices=False)

As the corpus is not very small, it's useful to set the parameter full_matrices=False to
save computational time. We assume we have two topics, so we can extract our sub-
matrices:

import numpy as np

>>> rank = 2

>>> Uk = U[:, 0:rank]
>>> sk = np.diag(s)[0:rank, 0:rank]
>>> Vk = V[0:rank, :]

If we want to analyze the top 10 words per topic, we need to consider that:
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Therefore, we can obtain the most significant words per topic after sorting the matrix using
the get_feature_names() method provided by the vectorizers:

>>> Mtwks = np.argsort(Vk, axis=1)[::-1]

>>> for t in range(rank):
>>>   print('\nTopic ' + str(t))
>>>     for i in range(10):
>>>        print(vectorizer.get_feature_names()[Mtwks[t, i]])

Topic 0
said
mr
city
hawksley
president
year
time
council
election
federal

Topic 1
plainfield
wasn
copy
released
absence
africa
clash
exacerbated
facing
difficulties

In this case, we're considering only non-negative values in the matrix Vk; however, as a
topic is a mixture of words, the negative components should also be taken into account. In
this case, we need to sort the absolute values of Vk:

>>> Mtwks = np.argsort(np.abs(Vk), axis=1)[::-1]

If we want to analyze how a document is represented in this sub-space, we must use:
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Let's consider, for example, the first document of our corpus:

>>> print(corpus[0])
The Fulton County Grand Jury said Friday an investigation of Atlanta's
recent primary election produced `` no evidence '' that any irregularities
took place .

>>> Mdtk = Uk.dot(sk)

>>> print('d0 = %.2f*t1 + %.2f*t2' % (Mdtk[0][0], Mdtk[0][1]))
d0 = 0.15*t1 + -0.12*t2

As we are working in a bidimensional space, it's interesting to plot all the points
corresponding to each document:
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In the previous figure, we can see that many documents are correlated, with a small group
of outliers. This is probably due to the fact that our choice of two topics is restrictive. If we
repeat the same experiment using two Brown corpus categories (news and fiction), we
observe a different behavior:

sentences = brown.sents(categories=['news', 'fiction'])
corpus = []

for s in sentences:
 corpus.append(' '.join(s))

I don't repeat the remaining calculations because they are similar. (The only difference is
that our corpus is now quite bigger and this leads to a longer computational time. For this
reason, we're going to discuss an alternative, which is much faster.) Plotting the points
corresponding to the documents, we now get:

Now it's easier to distinguish two groups, which are almost orthogonal (meaning that many
documents belong to only one category). I suggest repeating this experiment with different
corpora and ranks. Unfortunately, it's impossible to plot more than three dimensions, but
it's always possible to check whether the sub-space describes the underlying semantics
correctly using only numerical computations.
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As anticipated, the standard SciPy SVD implementation can be really slow when the
occurrence matrix is huge; however, scikit-learn provides a truncated SVD implementation,
TruncatedSVD, that works only with the sub-space. The result is much faster (it can
directly manage sparse matrices too). Let's repeat the previous experiments (with a
complete corpus) using this class:

from sklearn.decomposition import TruncatedSVD

>>> tsvd = TruncatedSVD(n_components=rank)
>>> Xt = tsvd.fit_transform(Xc)

Through the n_components parameter, it's possible to set the desired rank, discarding the
remaining parts of the matrices. After fitting the model, we get the document-topic matrix
Mdtk directly as the output of the method fit_transform(), while the topic-word matrix
Mtwk can be accessed using the instance variable components_:

>>> Mtws = np.argsort(tsvd.components_, axis=1)[::-1]

>>> for t in range(rank):
>>>    print('\nTopic ' + str(t))
>>>       for i in range(10):
>>>          print(vectorizer.get_feature_names()[Mwts[t, i]])

Topic 0
said
rector
hans
aloud
liston
nonsense
leave
whiskey
chicken
fat

Topic 1
bong
varnessa
schoolboy
kaboom
keeeerist
aggravated
jealous
hides
mayonnaise
fowl
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The reader can verify how much faster this process can be; therefore, I suggest using a
standard SVD implementation only when it's needed to have access to the full matrices.
Unfortunately, as is also written in the documentation, this method is very sensitive to the
algorithm and the random state. It also suffers from a phenomenon called sign
indeterminacy, which means that the signs of all components can change if a different
random seed is used. I suggest you declare:

import numpy as np

np.random.seed(1234)

Do this with a fixed seed at the beginning of every file (even Jupyter notebooks) to be sure
that it's possible to repeat the calculations and always obtain the same result.

Moreover, I advise repeating this experiment using non-negative matrix factorization, as
described in Chapter 3, Feature Selection and Feature Engineering.

Probabilistic latent semantic analysis
The previous model was based on a deterministic approach, but it's also possible to define a
probabilistic model over the space determined by documents and words. In this case, we're
not making any assumption about Apriori probabilities (this will be done in the next
approach), and we're going to determine the parameters that maximize the log-likelihood of
our model. In particular, consider the plate notation (if you want to know more about this
technique, read h t t p s ://e n . w i k i p e d i a . o r g /w i k i /P l a t e _ n o t a t i o n ) shown in the
following figure:
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We assume we have a corpus of m documents and each of them is composed of n words
(both elements are observed and therefore represented as gray circles); however, we also
assume the presence of a limited set of k common latent factors (topics) that link a
document with a group of words (as they are not observed, the circle is white). As already
written, we cannot observe them directly, but we're allowed to assume their existence.

The joint probability to find a document with a particular word is:

Therefore, after introducing the latent factors, the conditional probability to find a word in a
specific document can be written as:

The initial joint probability P(d, w) can be also expressed using the latent factors:

This includes the prior probability P(t). As we don't want to work with it, it's preferable to
use the expression P(w|d). To determine the two conditional probability distributions, a
common approach is the expectation-maximization (EM) strategy. A full description can be
found in Hofmann T., Unsupervised Learning by Probabilistic Latent Semantic Analysis,
Machine Learning 42, 177-196, 2001, Kluwer Academic Publishers. In this context, we show
only the final results without any proof.

The log-likelihood can be written as:
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Which becomes:

Mdw is an occurrence matrix (normally obtained with a count vectorizer) and Mdw(d, w) is the
frequency of the word w in document d. For simplicity, we are going to approximate it by 
excluding the first term (which doesn't depend on tk):

Moreover, it's useful to introduce the conditional probability P(t|d,w), which is the
probability of a topic given a document and a word. The EM algorithm maximizes the
expected complete log-likelihood under the posterior probability P(t|d,w):

The E phase of the algorithm can be expressed as:

It must be extended to all topics, words, and documents and must be normalized with the
sum per topic in order to always have consistent probabilities.

The M phase is split into two computations:
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Also in this case, the calculations must be extended to all topics, words, and documents. But
in the first case, we sum by document and normalize by summing by word and document,
while in the second, we sum by word and normalize by the length of the document.

The algorithm must be iterated until the log-likelihood stops increasing its magnitude.
Unfortunately, scikit-learn doesn't provide a PLSA implementation (maybe because the
next strategy, LDA, is considered much more powerful and efficient), so we need to write
some code from scratch. Let's start by defining a small subset of the Brown corpus, taking
10 sentences from the editorial category and 10 from the fiction one:

>>> sentences_1 = brown.sents(categories=['editorial'])[0:10]
>>> sentences_2 = brown.sents(categories=['fiction'])[0:10]
>>> corpus = []

>>> for s in sentences_1 + sentences_2:
>>>    corpus.append(' '.join(s))

Now we can vectorize using the CountVectorizer class:

import numpy as np

from sklearn.feature_extraction.text import CountVectorizer

>>> cv = CountVectorizer(strip_accents='unicode', stop_words='english')
>>> Xc = np.array(cv.fit_transform(corpus).todense())

At this point, we can define the rank (we choose 2 for simplicity), two constants that will be
used later, and the matrices to hold the probabilities P(t|d), P(w|t), and P(t|d,w):

>>> rank = 2
>>> alpha_1 = 1000.0
>>> alpha_2 = 10.0

>>> Ptd = np.random.uniform(0.0, 1.0, size=(len(corpus), rank))
>>> Pwt = np.random.uniform(0.0, 1.0, size=(rank, len(cv.vocabulary_)))
>>> Ptdw = np.zeros(shape=(len(cv.vocabulary_), len(corpus), rank))

>>> for d in range(len(corpus)):
>>>    nf = np.sum(Ptd[d, :])
>>>    for t in range(rank):
>>>       Ptd[d, t] /= nf

>>> for t in range(rank):
>>>    nf = np.sum(Pwt[t, :])
>>>    for w in range(len(cv.vocabulary_)):
>>>       Pwt[t, w] /= nf
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The two matrices P(t|d), P(w|t) must be normalized so as to be coherent with the algorithm;
the other one is initialized to zero. Now we can define the log-likelihood function:

>>> def log_likelihood():
>>>    value = 0.0
>>>
>>>    for d in range(len(corpus)):
>>>       for w in range(len(cv.vocabulary_)):
>>>          real_topic_value = 0.0
>>>
>>>          for t in range(rank):
>>>             real_topic_value += Ptd[d, t] * Pwt[t, w]
>>>
>>>          if real_topic_value > 0.0:
>>>             value += Xc[d, w] * np.log(real_topic_value)
>>>
>>>    return value

And finally the expectation-maximization functions:

>>> def expectation():
>>>    global Ptd, Pwt, Ptdw
>>>
>>>    for d in range(len(corpus)):
>>>       for w in range(len(cv.vocabulary_)):
>>>          nf = 0.0
>>>
>>>          for t in range(rank):
>>>             Ptdw[w, d, t] = Ptd[d, t] * Pwt[t, w]
>>>             nf += Ptdw[w, d, t]
>>>
>>>          Ptdw[w, d, :] = (Ptdw[w, d, :] / nf) if nf != 0.0 else 0.0

In the preceding function, when the normalization factor is 0, the probability P(t|w, d) is set
to 0.0 for each topic:

>>> def maximization():
>>>    global Ptd, Pwt, Ptdw
>>>
>>>    for t in range(rank):
>>>       nf = 0.0
>>>
>>>       for d in range(len(corpus)):
>>>          ps = 0.0
>>>
>>>          for w in range(len(cv.vocabulary_)):
>>>             ps += Xc[d, w] * Ptdw[w, d, t]
>>>
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>>>          Pwt[t, w] = ps
>>>          nf += Pwt[t, w]
>>>
>>>       Pwt[:, w] /= nf if nf != 0.0 else alpha_1
>>>
>>>    for d in range(len(corpus)):
>>>       for t in range(rank):
>>>          ps = 0.0
>>>          nf = 0.0
>>>
>>>          for w in range(len(cv.vocabulary_)):
>>>             ps += Xc[d, w] * Ptdw[w, d, t]
>>>             nf += Xc[d, w]
>>>
>>>          Ptd[d, t] = ps / (nf if nf != 0.0 else alpha_2)

The constants alpha_1 and alpha_2 are used when a normalization factor becomes 0. In
that case, it can be useful to assign the probability a small value; therefore we divided the
numerator for those constants. I suggest trying with different values so as to tune up the
algorithm for different tasks.

At this point, we can try our algorithm with a limited number of iterations:

>>> print('Initial Log-Likelihood: %f' % log_likelihood())

>>> for i in range(50):
>>>    expectation()
>>>    maximization()
>>>    print('Step %d - Log-Likelihood: %f' % (i, log_likelihood()))

Initial Log-Likelihood: -1242.878549
Step 0 - Log-Likelihood: -1240.160748
Step 1 - Log-Likelihood: -1237.584194
Step 2 - Log-Likelihood: -1236.009227
Step 3 - Log-Likelihood: -1234.993974
Step 4 - Log-Likelihood: -1234.318545
Step 5 - Log-Likelihood: -1233.864516
Step 6 - Log-Likelihood: -1233.559474
Step 7 - Log-Likelihood: -1233.355097
Step 8 - Log-Likelihood: -1233.218306
Step 9 - Log-Likelihood: -1233.126583
Step 10 - Log-Likelihood: -1233.064804
Step 11 - Log-Likelihood: -1233.022915
Step 12 - Log-Likelihood: -1232.994274
Step 13 - Log-Likelihood: -1232.974501
Step 14 - Log-Likelihood: -1232.960704
Step 15 - Log-Likelihood: -1232.950965
...
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It's possible to verify the convergence after the 30th step. At this point, we can check the top
five words per topic considering the P(w|t) conditional distribution sorted in descending
mode per topic weight:

>>> Pwts = np.argsort(Pwt, axis=1)[::-1]

>>> for t in range(rank):
>>>    print('\nTopic ' + str(t))
>>>       for i in range(5):
>>>          print(cv.get_feature_names()[Pwts[t, i]])

Topic 0
years
questions
south
reform
social

Topic 1
convened
maintenance
penal
year
legislators

Latent Dirichlet Allocation
In the previous method, we didn't make any assumptions about the topic prior to
distribution and this can result in a limitation because the algorithm isn't driven by any
real-world intuition. LDA, instead, is based on the idea that a topic is characterized by a
small ensemble of important words and normally a document doesn't cover many topics.
For this reason, the main assumption is that the prior topic distribution is a symmetric
Dirichlet one. The probability density function is defined as:
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If the concentration parameter alpha is below 1.0, the distribution will be sparse as desired.
This allows us to model topic-document and topic-word distributions, which will always be
concentrated on a few values. In this way we can avoid the following:

The topic mixture assigned to a document could becoming flat (many topics with
similar weight)
The structure of a topic considering the word ensemble could becoming similar to
a background (in fact, only a limited number of words must be important;
otherwise the semantic boundaries fade out).

Using the plate notation, we can represent the relationship among documents, topics, and
words as shown in the following figure:

In the previous figure, alpha is the Dirichlet parameter for the topic-document distribution,
while gamma has the same role for the topic-word distribution. Theta, instead, is the topic
distribution for a specific document, while beta is the topic distribution for a specific word.
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If we have a corpus of m documents and a vocabulary of n words (each document has ni

words) and we assume to have k different topics, the generative algorithm can be described
with the following steps:

For each document, draw a sample (a topic mixture) from the topic-document
distribution:

For each topic, draw a sample from the from the topic-word distribution:

Both parameters must be estimated. At this point, considering the occurrence matrix Mdw

and the notation zmn to define the topic assigned to the n-th word in the m-th document, we
can iterate over documents (index d) and words (index w):

A topic for document d and word w is chosen according to:

A word is chosen according to:

In both cases, a categorical distribution is a one-trial multinomial one. A complete
description of how the parameters are estimated is quite complex and it's beyond the scope
of this book; however, the main problem is finding the distribution of latent variables:
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The reader can find a lot more information in Blei D., Ng A., Jordan M., Latent Dirichlet
Allocation, Journal of Machine Learning Research, 3, (2003) 993-1022. However, a very
important difference between LDA and PLSA is about the generative ability of LDA, which
allows working with unseen documents. In fact, the PLSA training process finds the
optimal parameters p(t|d) only for the corpus, while LDA adopts random variables. It's
possible to understand this concept by defining the probability of theta (a topic mixture) as
joint with a set of topics and a set of words, and conditioned to the model parameters:

As shown in the previously mentioned paper, the probability of a document (a set of words)
conditioned to the model parameters, can be obtained by integration:

This expression shows the difference between PLSA and LDA. Once learned p(t|d), PLSA
cannot generalize, while LDA, sampling from the random variables, can always find a
suitable topic mixture for an unseen document.

scikit-learn provides a full LDA implementation through the class
LatentDirichletAllocation. We're going to use it with a bigger dataset (4,000
documents) built from a subset of the Brown corpus:

>>> sentences_1 = brown.sents(categories=['reviews'])[0:1000]
>>> sentences_2 = brown.sents(categories=['government'])[0:1000]
>>> sentences_3 = brown.sents(categories=['fiction'])[0:1000]
>>> sentences_4 = brown.sents(categories=['news'])[0:1000]
>>> corpus = []

>>> for s in sentences_1 + sentences_2 + sentences_3 + sentences_4:
>>>    corpus.append(' '.join(s))

Now we can vectorize, define, and train our LDA model by assuming that we have eight
main topics:

from sklearn.decomposition import LatentDirichletAllocation

>>> cv = CountVectorizer(strip_accents='unicode', stop_words='english',
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analyzer='word', token_pattern='[a-z]+')
>>> Xc = cv.fit_transform(corpus)

>>> lda = LatentDirichletAllocation(n_topics=8, learning_method='online',
max_iter=25)
>>> Xl = lda.fit_transform(Xc)

In CountVectorizer, we added a regular expression to filter the tokens through the
parameter token_pattern. This is useful as we are not using a full tokenizer and, in the
corpus, there are also many numbers that we want to filter out. The class
LatentDirichletAllocation allows us to specify the learning method (through
learning_method), which can be either batch or online. We have chosen online because
it's faster; however, both methods adopt variational Bayes to learn the parameters. The
former adopts the whole dataset, while the latter works with mini-batches. The online
option will be removed in the 0.20 release; therefore, you can see a deprecation warning
when using it now. Both theta and beta Dirichlet parameters can be specified through
doc_topic_prior (theta) and topic_word_prior (beta). The default value (adopted by
us too) is 1.0 / n_topics . It's important to keep both values small and, in particular, less
than 1.0 in order to encourage sparseness. The maximum number of iterations (max_iter)
and other learning-related parameters can be applied by reading the built-in documentation
or visiting h t t p ://s c i k i t - l e a r n . o r g /s t a b l e /m o d u l e s /g e n e r a t e d /s k l e a r n . d e c o m p o s i t

i o n . L a t e n t D i r i c h l e t A l l o c a t i o n . h t m l .

Now we can test our model by extracting the top five keywords per topic. Just like
TruncatedSVD, the topic-word distribution results are stored in the instance variable
components_:

>>> Mwts_lda = np.argsort(lda.components_, axis=1)[::-1]

>>> for t in range(8):
>>>    print('\nTopic ' + str(t))
>>>       for i in range(5):
>>>          print(cv.get_feature_names()[Mwts_lda[t, i]])

Topic 0
code
cadenza
unlocks
ophthalmic
quo

Topic 1
countless
harnick
leni
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There are some repetitions, probably due to the composition of some topics, and the reader
can try different prior parameters to observe the changes. It's possible to do an experiment
to check whether the model works correctly.

Let's consider two documents:

>>> print(corpus[0])
It is not news that Nathan Milstein is a wizard of the violin .

>>> print(corpus[2500])
The children had nowhere to go and no place to play , not even sidewalks .

They are quite different and so are their topic distributions:

>>> print(Xl[0])
[ 0.85412134 0.02083335 0.02083335 0.02083335 0.02083335 0.02083677
 0.02087515 0.02083335]

>>> print(Xl[2500])
[ 0.22499749 0.02500001 0.22500135 0.02500221 0.025 0.02500219
 0.02500001 0.42499674]

We have a dominant topic (0.85t0) for the first document and a mixture (0.22t0 +

0.22t2 + 0.42t7) for the second one. Now let's consider the concatenation of both
documents:

>>> test_doc = corpus[0] + ' ' + corpus[2500]
>>> y_test = lda.transform(cv.transform([test_doc]))

>>> print(y_test)
[[ 0.61242771 0.01250001 0.11251451 0.0125011 0.01250001 0.01250278
 0.01251778 0.21253611]]

In the resulting document, as expected, the mixture has changed: 0.61t0 + 0.11t2 +

0.21t7. In other words, the algorithm introduced the previously dominant topic 5 (which is
now stronger) by weakening both topic 2 and topic 7. This is reasonable, because the length
of the first document is less than the second one, and therefore topic 5 cannot completely
cancel the other topics out.
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Sentiment analysis
One the most widespread applications of NLP is sentiment analysis of short texts (tweets,
posts, comments, reviews, and so on). From a marketing viewpoint, it's very important to
understand the semantics of these pieces of information in terms of the sentiment
expressed. As you can understand, this task can be very easy when the comment is precise
and contains only a set of positive/negative words, but it becomes more complex when in
the same sentence there are different propositions that can conflict with each other. For
example, I loved that hotel. It was a wonderful experience is clearly a positive comment, while
The hotel is good, however, the restaurant was bad and, even if the waiters were kind, I had to fight
with a receptionist to have another pillow. In this case, the situation is more difficult to manage,
because there are both positive and negative elements, resulting in a neutral review. For this
reason, many applications aren't based on a binary decision but admit intermediate levels
(at least one to express the neutrality).

These kind of problems are normally supervised (as we're going to do), but there are also
cheaper and more complex solutions. The simplest way to evaluate the sentiment is to look
for particular keywords. This dictionary-based approach is fast and, together with a good
stemmer, can immediately mark positive and negative documents. On the flip side, it
doesn't consider the relationship among terms and cannot learn how to weight the different
components. For example, Lovely day, bad mood will result in a neutral (+1, -1), while with a
supervised approach it's possible to make the model learn that mood is very important and
bad mood will normally drive to a negative sentiment. Other approaches (much more
complex) are based on topic modeling (you can now understand how to apply LSA or LDA
to determine the underlying topics in terms of positivity or negativity); however, they need
further steps to use topic-word and topic-document distributions. It can be helpful in the
real semantics of a comment, where, for example, a positive adjective is normally used
together with other similar components (like verbs). Say, Lovely hotel, I'm surely coming back.
In this case (if the number of samples is big enough), a topic can emerge from the
combination of words such as lovely or amazing and (positive) verbs such as returning or
coming back.
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An alternative is to consider the topic distribution of positive and negative documents and
work with a supervised approach in the topic sub-space. Other approaches include deep-
learning techniques (such as Word2Vec or Doc2Vec) and are based on the idea of
generating a vectorial space where similar words are close to each other, in order to easily
manage synonyms. For example, if the training set contains the sentence Lovely hotel but it
doesn't contain Wonderful hotel, a Word2Vec model can learn from other examples that
lovely and wonderful are very close; therefore the new document Wonderful hotel is
immediately classified using the knowledge provided by the first comment. An
introduction to this technique, together with some technical papers, can be found at h t t p s

://c o d e . g o o g l e . c o m /a r c h i v e /p /w o r d 2v e c /.

Let's now consider our example, which is based on a subset of the Twitter Sentiment Analysis
Training Corpus dataset. In order to speed up the process, we have limited the experiment to
1,00,000 tweets. After downloading the file (see the box at the end of this paragraph), it's
necessary to parse it (using the UTF-8 encoding):

>>> dataset = 'dataset.csv'

>>> corpus = []
>>> labels = []

>>> with open(dataset, 'r', encoding='utf-8') as df:
>>>    for i, line in enumerate(df):
>>>    if i == 0:
>>>       continue
>>>
>>>    parts = line.strip().split(',')
>>>    labels.append(float(parts[1].strip()))
>>>    corpus.append(parts[3].strip())

The dataset variable must contain the full path to the CSV file. This procedure reads all
the lines skipping the first one (which is the header), and stores each tweet as a new list
entry in the corpus variable, and the corresponding sentiment (which is binary, 0 or 1) in
the labels variable. At this point, we proceed as usual, tokenizing, vectorizing, and
preparing the training and test sets:

from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from nltk.stem.lancaster import LancasterStemmer

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

>>> rt = RegexpTokenizer('[a-zA-Z0-9\.]+')
>>> ls = LancasterStemmer()
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>>> sw = set(stopwords.words('english'))

>>> def tokenizer(sentence):
>>>    tokens = rt.tokenize(sentence)
>>>    return [ls.stem(t.lower()) for t in tokens if t not in sw]

>>> tfv = TfidfVectorizer(tokenizer=tokenizer, sublinear_tf=True,
ngram_range=(1, 2), norm='l2')
>>> X = tfv.fit_transform(corpus[0:100000])
>>> Y = np.array(labels[0:100000])

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.1)

We have chosen to include dots together with letters and numbers in the
RegexpTokenizer instance because they are useful for expressing particular emotions.
Moreover, the n-gram range has been set to (1, 2), so we include bigrams (the reader can try
with trigrams too). At this point, we can train a random forest:

from sklearn.ensemble import RandomForestClassifier

import multiprocessing

>>> rf = RandomForestClassifier(n_estimators=20,
n_jobs=multiprocessing.cpu_count())
>>> rf.fit(X_train, Y_train)

Now we can produce some metrics to evaluate the model:

from sklearn.metrics import precision_score, recall_score

>>> print('Precision: %.3f' % precision_score(Y_test, rf.predict(X_test)))
Precision: 0.720

>>> print('Recall: %.3f' % recall_score(Y_test, rf.predict(X_test)))
Recall: 0.784

The performances are not excellent (it's possible to achieve better accuracies using
Word2Vec); however, they are acceptable for many tasks. In particular, a 78% recall means
that the number of false negatives is about 20% and it can be useful when using sentiment
analysis for an automatic processing task (in many cases, the risk threshold to auto-publish
a negative review is quite a bit lower, and, therefore, a better solution must be employed).
The performances can be also confirmed by the corresponding ROC curve:
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The Twitter Sentiment Analysis Training Corpus dataset (as a CSV file) used
in the example can be downloaded from h t t p ://t h i n k n o o k . c o m /w p - c o n t

e n t /u p l o a d s /2012/09/S e n t i m e n t - A n a l y s i s - D a t a s e t . z i p . Considering
the amount of data, the training process can be very long (even taking
hours on slower machines).
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VADER sentiment analysis with NLTK
For the English language, NLTK provides an already trained model called VADER
(Valence Aware Dictionary and sEntiment Reasoner) that works in a slightly different way
and adopts a rule engine together with a lexicon to infer the sentiment intensity of a piece of
text. More information and details can be found in Hutto C.J., Gilbert E., VADER: A
Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text, AAAI, 2014.

The NLTK version uses the SentimentIntensityAnalyzer class and can immediately be
used to have a polarity sentiment measure made up of four components:

Positive factor
Negative factor
Neutral factor
Compound factor

The first three don't need any explanation, while the last one is a particular measure (a
normalized overall score), which is computed as:

Here, Sentiment(wi) is the score valence of the word wi and alpha is a normalization
coefficient that should approximate the maximum expected value (the default value set in
NLTK is 15). The usage of this class is immediate, as the following snippet can confirm:

from nltk.sentiment.vader import SentimentIntensityAnalyzer

>>> text = 'This is a very interesting and quite powerful sentiment
analyzer'

>>> vader = SentimentIntensityAnalyzer()
>>> print(vader.polarity_scores(text))
{'neg': 0.0, 'neu': 0.535, 'pos': 0.465, 'compound': 0.7258}

The NLTK Vader implementation uses the library Twython for some
functionalities. Even though it's not necessary, in order to avoid a
warning, it's possible to install it using pip (pip install twython).
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Summary
In this chapter, we introduced topic modeling. We discussed latent semantic analysis based
on truncated SVD, probabilistic latent semantic analysis (which aims to build a model
without assumptions about latent factor prior probabilities), and latent Dirichlet allocation,
which outperformed the previous method and is based on the assumption that the latent
factor has a sparse prior Dirichlet distribution. This means that a document normally covers
only a limited number of topics and a topic is characterized only by a few important words.

In the last section, we discussed sentiment analysis of documents, which is aimed at
determining whether a piece of text expresses a positive or negative feeling. In order to
show a feasible solution, we built a classifier based on an NLP pipeline and a random forest
with average performances that can be used in many real-life situations.

In the next chapter, we're going to briefly introduce deep learning, together with the
TensorFlow framework. As this topic alone requires a dedicated book, our goal is to define
the main concepts with some practical examples. If the reader wants to have further
information, at the end of the chapter, a complete reference list will be provided.



14
A Brief Introduction to Deep

Learning and TensorFlow
In this chapter, we're going to briefly introduce deep learning with some examples based on
TensorFlow. This topic is quite complex and needs dedicated books; however, our goal is to
allow the reader to understand some basic concepts that can be useful before starting a
complete course. In the first section, we're presenting the structure of artificial neural
networks and how they can be transformed in a complex computational graph with several
different layers. In the second one, instead, we're going to introduce the basic concepts
concerning TensorFlow and we'll show some examples based on algorithms already
discussed in previous chapters. In the last section, we briefly present Keras, a high-level
deep learning framework and we build an example of image classification using a
convolutional neural network.

Deep learning at a glance
Deep learning has become very famous in the last few decades, thanks to hundreds of
applications that are changing the way we interact with many electronic (and non-
electronic) systems. Speech, text, and image recognition; autonomous vehicles; and
intelligent bots (just to name a few) are common applications normally based on deep
learning models and have outperformed any previous classical approach.

To better understand what a deep architecture is (considering that this is only a brief
introduction), we need to step back and talk about standard artificial neural networks.
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Artificial neural networks
An artificial neural network (ANN) or simply neural network is a directed structure that
connects an input layer with an output one. Normally, all operations are differentiable and
the overall vectorial function can be easily written as:

Here:

The adjective "neural" comes from two important elements: the internal structure of a basic
computational unit and the interconnections among them. Let's start with the former. In the
following figure, there's a schematic representation of an artificial neuron:



A Brief Introduction to Deep Learning and TensorFlow

[ 290 ]

A neuron core is connected with n input channels, each of them characterized by a synaptic
weight wi. The input is split into its components and they are multiplied by the
corresponding weight and summed. An optional bias can be added to this sum (it works
like another weight connected to a unitary input). The resulting sum is filtered by an
activation function fa (for example a sigmoid, if you recall how a logistic regression works)
and the output is therefore produced. In Chapter 5, Logistic Regression, we also discussed
perceptrons (the first artificial neural networks), which correspond exactly to this
architecture with a binary-step activation function. On the other hand, even a logistic
regression can be represented as a single neuron neural network, where fa(x) is a sigmoid.
The main problem with this architecture is that it's intrinsically linear because the output is
always a function of the dot product between the input vector and the weight one. You
already know all the limitations that such a system has; therefore it's necessary to step 
forward and create the first Multi-layer Perceptron (MLP). In the following figure, there's a
schematic representation of an MLP with an n-dimensional input, p hidden neurons, and a
k-dimensional output:
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There are three layers (even though the number can be larger): the input layer, which
receives the input vectors; a hidden layer; and the output one, which is responsible for
producing the output. As you can see, every neuron is connected to all the neurons
belonging the next layer and now we have two weight matrices, W = (wij) and H = (hjk), using
the convention that the first index is referred to the previous layer and the second to the
following one.

Therefore, the net input to each hidden neuron and the corresponding output is:

In the same way, we can compute the network output:

As you can see, the network has become highly non-linear and this feature allows us to
model complex scenarios that were impossible to manage with linear methods. But how can
we determine the values for all synaptic weights and biases? The most famous algorithm is
called back-propagation and it works in a very simple way (the only important assumption
is that both fa(x) must be differentiable).

First of all, we need to define an error (loss) function; for many classification tasks, it can be
the total squared error:
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Here we have assumed to have N input samples. Expanding it, we obtain:

This function depends on all variables (weights and biases), but we can start from the
bottom and consider first only hjk (for simplicity I'm not considering the biases as normal
weights); therefore we can compute the gradients and update the weights:

In the same way, we can derive the gradient with respect to wij:

As you can see, the term alpha (which is proportional to the error delta) is back-propagated
from the output layer to the hidden one. If there are many hidden layers, this procedure
should be repeated recursively until the first layer. The algorithm adopts the gradient
descent method; therefore it updates the weights iteratively until convergence:

Here, the parameter eta (Greek letter in the formula) is the learning rate.
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In many real problems, the stochastic gradient descent method is adopted (read h t t p s ://e n

. w i k i p e d i a . o r g /w i k i /S t o c h a s t i c _ g r a d i e n t _ d e s c e n t , for further information), which
works with batches of input samples, instead of considering the entire dataset. Moreover,
many optimizations can be employed to speed up the convergence, but they are beyond the
scope of this book. In Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, the
reader can find all the details about the majority of them. For our purposes, it's important to
know that we can build a complex network and, after defining a global loss function,
optimize all the weights with a standard procedure. In the section dedicated to TensorFlow,
we're going to show an example of MLP, but we're not implementing the learning
algorithm because, luckily, all optimizers have already been built and can be applied to
every architecture.

Deep architectures
MLPs are powerful, but their expressiveness is limited by the number and the nature of the
layers. Deep learning architectures, on the other side, are based on a sequence of
heterogeneous layers which perform different operations organized in a computational
graph. The output of a layer, correctly reshaped, is fed into the following one, until the
output, which is normally associated with a loss function to optimize. The most interesting
applications have been possible thanks to this stacking strategy, where the number of
variable elements (weights and biases) can easily reach over 10 million; therefore, the ability
to capture small details and generalize them exceeds any expectations. In the following
section, I'm going to introduce briefly the most important layer types.

Fully connected layers
A fully connected (sometimes called dense) layer is made up of n neurons and each of them
receives all the output values coming from the previous layer (like the hidden layer in a
MLP). It can be characterized by a weight matrix, a bias vector, and an activation function:
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They are normally used as intermediate or output layers, in particular when it's necessary
to represent a probability distribution. For example, a deep architecture could be employed
for an image classification with m output classes. In this case, the softmax activation function
allows having an output vector where each element is the probability of a class (and the
sum of all outputs is always normalized to 1.0). In this case, the argument is considered as a
logit or the logarithm of a probability:

Wi is the i-th row of W. The probability of a class yi is obtained by applying the softmax
function to each logit:

This type of output can easily be trained using a cross-entropy loss function, as already
discussed for logistic regression.

Convolutional layers
Convolutional layers are normally applied to bidimensional inputs (even though they can
be used for vectors and 3D matrices) and they became particularly famous thanks to their
extraordinary performance in image classification tasks. They are based on the discrete
convolution of a small kernel k with a bidimensional input (which can be the output of
another convolutional layer):
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A layer is normally made up of n fixed-size kernels, and their values are considered as
weights to learn using a back-propagation algorithm. A convolutional architecture, in most
cases, starts with layers with few larger kernels (for example, 16 (8 x 8) matrices) and feeds
their output to other layers with a higher number of smaller kernels (32 (5 x 5), 128 (4 x 4),
and 256 (3 x 3)). In this way, the first layers should learn to capture more generic features
(such as orientation), while the following ones will be trained to capture smaller and
smaller elements (such as the position of eyes, nose, and mouth in a face). The output of the
last convolutional layer is normally flattened (transformed into a 1D vector) and used as
input for one or more fully connected layers.

In the following figure, there's a schematic representation of a convolution over a picture:

Each square set of 3 x 3 pixels is convoluted with a Laplacian kernel and transformed into a
single value, which corresponds to the sum of upper, lower, left, and right pixels
(considering the centre) minus four times the central one. We're going to see a complete
example using this kernel in the following section.

To reduce the complexity when the number of convolutions is very high, one or more
pooling layers can be employed. Their task is to transform each group of input points
(pixels in an image) into a single value using a predefined strategy. The most common 
pooling layers are:

Max pooling: Every bidimensional group of (m x n) pixels is transformed into a
single pixel whose value is the greatest in the group.
Average pooling: Every bidimensional group of (m x n) pixels is transformed into
a single pixel whose value is the average of the group.
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In this way, the dimensionality of the original matrix can be reduced with a loss of
information, but that can often be discarded (in particular in the first layers where the
granularity of the features is coarse). Another important category of layers are the zero-
padding ones. They work by adding null values (0) before and after the input (1D) or at the
left, right, top and bottom side of 2D input.

Dropout layers
A dropout layer is used to prevent overfitting of the network by randomly setting a fixed
number of input elements to 0. This layer is adopted during the training phase, but it's
normally deactivated during test, validation, and production phases. Dropout networks can
exploit higher learning rates, moving in different directions on the loss surface (setting to
zero a few random input values in the hidden layers is equivalent to training different sub-
models) and excluding all the error-surface areas that don't lead to a consistent
optimization. Dropout is very useful in very big models, where it increases the overall
performance and reduces the risk of freezing some weights and overfitting the model.

Recurrent neural networks
A recurrent layer is made up of particular neurons that present recurrent connections so as
to bind the state at time t to its previous values (in general, only one). This category of
computational cells is particularly useful when it's necessary to capture the temporal
dynamics of an input sequence. In many situations, in fact, we expect an output value that
must be correlated with the history of the corresponding inputs. But an MLP, as well as the
other models that we've discussed, are stateless. Therefore, their output is determined only
by the current input. RNNs overcome this problem by providing an internal memory which
can capture short-term and long-term dependencies.

The most common cells are Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) and they can both be trained using a standard back-propagation approach. As this is
only an introduction, I cannot go deeper (RNN mathematical complexity is non-trivial);
however, it's useful to remember that whenever a temporal dimension must be included in
a deep model, RNNs offer stable and powerful support.
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A brief introduction to TensorFlow
TensorFlow is a computational framework created by Google and has become one of the
most diffused deep-learning toolkits. It can work with both CPUs and GPUs and already
implements most of the operations and structures required to build and train a complex
model. TensorFlow can be installed as a Python package on Linux, Mac, and Windows
(with or without GPU support); however, I suggest you follow the instructions provided on
the website (the link can be found in the infobox at the end of this chapter) to avoid
common mistakes.

The main concept behind TensorFlow is the computational graph, or a set of subsequent
operations that transform an input batch into the desired output. In the following figure,
there's a schematic representation of a graph:
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Starting from the bottom, we have two input nodes (a and b), a transpose operation (that
works on b), a matrix multiplication and a mean reduction. The init block is a separate
operation, which is formally part of the graph, but it's not directly connected to any other
node; therefore it's autonomous (indeed, it's a global initializer).

As this one is only a brief introduction, it's useful to list all of the most important strategic
elements needed to work with TensorFlow so as to be able to build a few simple examples
that can show the enormous potential of this framework:

Graph: This represents the computational structure that connects a generic input
batch with the output tensors through a directed network made of operations. It's
defined as a tf.Graph() instance and normally used with a Python context
manager.
Placeholder: This is a reference to an external variable, which must be explicitly
supplied when it's requested for the output of an operation that uses it directly or
indirectly. For example, a placeholder can represent a variable x, which is first
transformed into its squared value and then summed to a constant value. The
output is then x2+c, which is materialized by passing a concrete value for x. It's
defined as a tf.placeholder() instance.
Variable: An internal variable used to store values which are updated by the
algorithm. For example, a variable can be a vector containing the weights of a
logistic regression. It's normally initialized before a training process and
automatically modified by the built-in optimizers. It's defined as a
tf.Variable() instance. A variable can also be used to store elements which
must not be considered during training processes; in this case, it must be declared
with the parameter trainable=False.
Constant: A constant value defined as a tf.constant() instance.
Operation: A mathematical operation that can work with placeholders, variables,
and constants. For example, the multiplication of two matrices is an operation
defined as tf.matmul(A, B). Among all operations, gradient calculation is one
of the most important. TensorFlow allows determining the gradients starting
from a determined point in the computational graph, until the origin or another
point that must be logically before it. We're going to see an example of this
operation.
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Session: This is a sort of wrapper-interface between TensorFlow and our working
environment (for example, Python or C++). When the evaluation of a graph is
needed, this macro-operation will be managed by a session, which must be fed
with all placeholder values and will produce the required outputs using the
requested devices. For our purposes, it's not necessary to go deeper into this
concept; however, I invite the reader to retrieve further information from the
website or from one of the resources listed at the end of this chapter. It's declared
as an instance of tf.Session() or, as we're going to do, an instance of
tf.InteractiveSession(). This type of session is particularly useful when
working with notebooks or shell commands, because it places itself automatically
as the default one.
Device: A physical computational device, such as a CPU or a GPU. It's declared
explicitly through an instance of the class tf.device() and used with a context
manager. When the architecture contains more computational devices, it's
possible to split the jobs so as to parallelize many operations. If no device is
specified, TensorFlow will use the default one (which is the main CPU or a
suitable GPU if all the necessary components are installed).

We can now analyze some simple examples using these concepts.

Computing gradients
The option to compute the gradients of all output tensors with respect to any connected
input or node is one of the most interesting features of TensorFlow, because it allows us to
create learning algorithms without worrying about the complexity of all transformations. In
this example, we first define a linear dataset representing the function f(x) = x in the range
(-100, 100):

import numpy as np

>>> nb_points = 100
>>> X = np.linspace(-nb_points, nb_points, 200, dtype=np.float32)
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The corresponding plot is shown in the following figure:

Now we want to use TensorFlow to compute:

The first step is defining a graph:

import tensorflow as tf

>>> graph = tf.Graph()

Within the context of this graph, we can define our input placeholder and other operations:

>>> with graph.as_default():
>>>    Xt = tf.placeholder(tf.float32, shape=(None, 1), name='x')
>>>    Y = tf.pow(Xt, 3.0, name='x_3')
>>>    Yd = tf.gradients(Y, Xt, name='dx')
>>>    Yd2 = tf.gradients(Yd, Xt, name='d2x')
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A placeholder is generally defined with a type (first parameter), a shape, and an optional
name. We've decided to use a tf.float32 type because this is the only type also supported
by GPUs. Selecting shape=(None, 1) means that it's possible to use any bidimensional
vectors with the second dimension equal to 1.

The first operation computes the third power if Xt is working on all elements. The second
operation computes all the gradients of Y with respect to the input placeholder Xt. The last
operation will repeat the gradient computation, but in this case, it uses Yd, which is the
output of the first gradient operation.

We can now pass some concrete data to see the results. The first thing to do is create a
session connected with this graph:

>>> session = tf.InteractiveSession(graph=graph)

By using this session, we ask any computation using the method run(). All the input
parameters must be supplied through a feed-dictionary, where the key is the placeholder,
while the value is the actual array:

>>> X2, dX, d2X = session.run([Y, Yd, Yd2], feed_dict={Xt:
X.reshape((nb_points*2, 1))})

We needed to reshape our array to be compliant with the placeholder. The first argument of
run() is a list of tensors that we want to be computed. In this case, we need all operation
outputs. The plot of each of them is shown in the following figure:

As expected, they represent respectively: x3, 3x2, and 6x.
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Logistic regression
Now we can try a more complex example implementing a logistic regression algorithm. The
first step, as usual, is creating a dummy dataset:

from sklearn.datasets import make_classification

>>> nb_samples = 500
>>> X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_redundant=0, n_classes=2)

The dataset is shown in the following figure:



A Brief Introduction to Deep Learning and TensorFlow

[ 303 ]

At this point, we can create the graph and all placeholders, variables, and operations:

import tensorflow as tf

>>> graph = tf.Graph()

>>> with graph.as_default():
>>>    Xt = tf.placeholder(tf.float32, shape=(None, 2), name='points')
>>>    Yt = tf.placeholder(tf.float32, shape=(None, 1), name='classes')
>>>
>>>    W = tf.Variable(tf.zeros((2, 1)), name='weights')
>>>    bias = tf.Variable(tf.zeros((1, 1)), name='bias')
>>>
>>>    Ye = tf.matmul(Xt, W) + bias
>>>    Yc = tf.round(tf.sigmoid(Ye))
>>>
>>>    loss =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Ye,
labels=Yt))
>>>    training_step =
tf.train.GradientDescentOptimizer(0.025).minimize(loss)

The placeholder Xt is needed for the points, while Yt represents the labels. At this point, we
need to involve a couple of variables: if you remember, they store values that are updated
by the training algorithm. In this case, we need a weight vector W (with two elements) and a
single bias. When a variable is declared, its initial value must be provided; we've decided
to set both to zero using the function tf.zeros(), which accepts as argument the shape of
the desired tensor.

Now we can compute the output (if you don't remember how logistic regression works,
please step back to Chapter 5, Logistic Regression) in two steps: first the sigmoid exponent
Ye and then the actual binary output Yc, which is obtained by rounding the sigmoid value.
The training algorithm for a logistic regression minimizes the negative log-likelihood,
which corresponds to the cross-entropy between the real distribution Y and Yc. It's easy to
implement this loss function; however, the function tf.log() is numerically unstable
(when its value becomes close to zero, it tends to negative infinity and yields a NaN value);
therefore, TensorFlow has implemented a more robust function,
tf.nn.sigmoid_cross_entropy_with_logits(), which computes the cross-entropy
assuming the output is produced by a sigmoid. It takes two parameters, the logits (which
corresponds to the exponent Ye) and the target labels, that are stored in Yt.
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Now we can work with one of the most powerful TensorFlow features: the training
optimizers. After defining a loss function, it will be dependent on placeholders, constants,
and variables. A training optimizer (such as tf.train.GradientDescentOptimizer()),
through its method minimize(), accepts the loss function to optimize. Internally,
according to every specific algorithm, it will compute the gradients of the loss function with
respect to all trainable variables and will apply the corresponding corrections to the values.
The parameter passed to the optimizer is the learning rate.

Therefore, we have defined an extra operation called training_step, which corresponds
to a single stateful update step. It doesn't matter how complex the graph is; all trainable
variables involved in a loss function will be optimized with a single instruction.

Now it's time to train our logistic regression. The first thing to do is to ask TensorFlow to
initialize all variables so that they are ready when the operations have to work with them:

>>> session = tf.InteractiveSession(graph=graph)
>>> tf.global_variables_initializer().run()

At this point, we can create a simple training loop (it should be stopped when the loss stops
decreasing; however, we have a fixed number of iterations):

>>> feed_dict = {
>>>    Xt: X,
>>>    Yt: Y.reshape((nb_samples, 1))
>>> }

>>> for i in range(5000):
>>>    loss_value, _ = session.run([loss, training_step],
feed_dict=feed_dict)
>>>    if i % 100 == 0:
>>>    print('Step %d, Loss: %.3f' % (i, loss_value))
Step 0, Loss: 0.269
Step 100, Loss: 0.267
Step 200, Loss: 0.265
Step 300, Loss: 0.264
Step 400, Loss: 0.263
Step 500, Loss: 0.262
Step 600, Loss: 0.261
Step 700, Loss: 0.260
Step 800, Loss: 0.260
Step 900, Loss: 0.259
...
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As you can see, at each iteration we ask TensorFlow to compute the loss function and a
training step, and we always pass the same dictionary containing X and Y. At the end of this
loop, the loss function is stable and we can check the quality of this logistic regression by
plotting the separating hyperplane:
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The result is approximately equivalent to the one obtained with the scikit-learn
implementation. If we want to know the values of both coefficients (weights) and intercept
(bias), we can ask TensorFlow to retrieve them by calling the method eval() on each
variable:

>>> Wc, Wb = W.eval(), bias.eval()

>>> print(Wc)
[[-1.16501403]
 [ 3.10014033]]

>>> print(Wb)
[[-0.12583369]]

Classification with a multi-layer perceptron
We can now build an architecture with two dense layers and train a classifier for a more
complex dataset. Let's start by creating it:

from sklearn.datasets import make_classification

>>> nb_samples = 1000
>>> nb_features = 3

>>> X, Y = make_classification(n_samples=nb_samples,
n_features=nb_features,
>>> n_informative=3, n_redundant=0, n_classes=2, n_clusters_per_class=3)
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Even if we have only two classes, the dataset has three features and three clusters per class;
therefore it's almost impossible that a linear classifier can separate it with very high
accuracy. A plot of the dataset is shown in the following figure:
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For benchmarking purposes, it's useful to test a logistic regression:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2)

>>> lr = LogisticRegression()
>>> lr.fit(X_train, Y_train)
>>> print('Score: %.3f' % lr.score(X_test, Y_test))
Score: 0.715

The score computed on the test set is about 71%, which is not really bad but below an
acceptable threshold. Let's try with an MLP with 50 hidden neurons (with hyperbolic
tangent activation) and 1 sigmoid output neuron. The hyperbolic tangent is:

And it's bounded asymptotically between -1.0 and 1.0.

We are not going to implement each layer manually, but we're using the built-in class
tf.contrib.layers.fully_connected(). It accepts the input tensor or placeholder as
the first argument and the number of layer-output neurons as the second one. The
activation function can be specified using the attribute activation_fn:

import tensorflow as tf
import tensorflow.contrib.layers as tfl

>>> graph = tf.Graph()

>>> with graph.as_default():
>>>    Xt = tf.placeholder(tf.float32, shape=(None, nb_features), name='X')
>>>    Yt = tf.placeholder(tf.float32, shape=(None, 1), name='Y')
>>>
>>>    layer_1 = tfl.fully_connected(Xt, num_outputs=50,
activation_fn=tf.tanh)
>>>    layer_2 = tfl.fully_connected(layer_1, num_outputs=1,
>>>                                  activation_fn=tf.sigmoid)
>>>
>>>    Yo = tf.round(layer_2)
>>>
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>>>    loss = tf.nn.l2_loss(layer_2 - Yt)
>>>    training_step =
tf.train.GradientDescentOptimizer(0.025).minimize(loss)

As in the previous example, we have defined two placeholders, Xt and Yt, and two fully
connected layers. The first one accepts as input Xt and has 50 output neurons (with tanh
activation), while the second accepts as input the output of the previous layer (layer_1)
and has only one sigmoid neuron, representing the class. The rounded output is provided
by Yo, while the loss function is the total squared error, and it's implemented using the
function tf.nn.l2_loss() computed on the difference between the output of the network
(layer_2) and the target class placeholder Yt. The training step is implemented using a
standard gradient descent optimizer, as for the logistic regression example.

We can now implement a training loop, splitting our dataset into a fixed number of batches
(the number of samples is defined in the variable batch_size) and repeating a complete
cycle for nb_epochs epochs:

>>> session = tf.InteractiveSession(graph=graph)
>>> tf.global_variables_initializer().run()

>>> nb_epochs = 200
>>> batch_size = 50

>>> for e in range(nb_epochs):
>>>    total_loss = 0.0
>>>    Xb = np.ndarray(shape=(batch_size, nb_features), dtype=np.float32)
>>>    Yb = np.ndarray(shape=(batch_size, 1), dtype=np.float32)
>>>
>>>    for i in range(0, X_train.shape[0]-batch_size, batch_size):
>>>       Xb[:, :] = X_train[i:i+batch_size, :]
>>>       Yb[:, 0] = Y_train[i:i+batch_size]
>>>
>>>       loss_value, _ = session.run([loss, training_step],
>>>                                   feed_dict={Xt: Xb, Yt: Yb})
>>>       total_loss += loss_value
>>>
>>>        Y_predicted = session.run([Yo],
>>>               feed_dict={Xt: X_test.reshape((X_test.shape[0],
nb_features))})
>>>        accuracy = 1.0 -
>>>            (np.sum(np.abs(np.array(Y_predicted[0]).squeeze(axis=1) -
Y_test)) /
>>>            float(Y_test.shape[0]))
>>>
>>>        print('Epoch %d) Total loss: %.2f - Accuracy: %.2f' %
>>>              (e, total_loss, accuracy))
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Epoch 0) Total loss: 78.19 - Accuracy: 0.66
Epoch 1) Total loss: 75.02 - Accuracy: 0.67
Epoch 2) Total loss: 72.28 - Accuracy: 0.68
Epoch 3) Total loss: 68.52 - Accuracy: 0.71
Epoch 4) Total loss: 63.50 - Accuracy: 0.79
Epoch 5) Total loss: 57.51 - Accuracy: 0.84
...
Epoch 195) Total loss: 15.34 - Accuracy: 0.94
Epoch 196) Total loss: 15.32 - Accuracy: 0.94
Epoch 197) Total loss: 15.31 - Accuracy: 0.94
Epoch 198) Total loss: 15.29 - Accuracy: 0.94
Epoch 199) Total loss: 15.28 - Accuracy: 0.94

As it's possible to see, without particular attention to all details, the accuracy computed on
the test set is 94%. This is an acceptable value, considering the structure of the dataset. In
Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, the reader will find details
of many important concepts that can still improve the performance and speed up the
convergence process.

Image convolution
Even if we're not building a complete deep learning model, we can test how convolution
works with a simple example. The input image we're using is already provided by SciPy:

from scipy.misc import face

>>> img = face(gray=True)
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The original picture is shown here:

We're going to apply a Laplacian filter, which emphasizes the boundary of each shape:

import numpy as np

>>> kernel = np.array(
>>>    [[0, 1, 0],
>>>     [1, -4, 0],
>>>     [0, 1, 0]],
>>>    dtype=np.float32)

>>> cfilter = np.zeros((3, 3, 1, 1), dtype=np.float32)
>>> cfilter[:, :, 0, 0] = kernel

The kernel must be repeated twice because the TensorFlow convolution function
tf.nn.conv2d expects an input and an output filter. We can now build the graph and test
it:

import tensorflow as tf

>>> graph = tf.Graph()

>>> with graph.as_default():
>>>    x = tf.placeholder(tf.float32, shape=(None, 768, 1024, 1),
name='image')
>>>    f = tf.constant(cfilter)
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>>>    y = tf.nn.conv2d(x, f, strides=[1, 1, 1, 1], padding='SAME')

>>> session = tf.InteractiveSession(graph=graph)

>>> c_img = session.run([y], feed_dict={x: img.reshape((1, 768, 1024, 1))})
>>> n_img = np.array(c_img).reshape((768, 1024))

The parameters strides is a four-dimensional vector (each value corresponds to the input
dimensions, so the first is the batch and the last one is the number of channels) that specifies
how many pixels the sliding window must shift. In this case, we want to cover all the image
shifting pixel to pixel. The parameter padding determines how the new dimensions must
be computed and whether it's necessary to apply a zero padding. In our case, we're using
the value SAME, which computes the dimensions by rounding off to the next integer the
original dimensions divided by the corresponding strides value (as the latter are both 1.0,
the resulting image size will be exactly like the original one).

The output image is shown here:

The installation instructions for every operating system can be found on h
t t p s ://w w w . t e n s o r f l o w . o r g /i n s t a l l /.
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A quick glimpse inside Keras
Keras (h t t p s ://k e r a s . i o ) is a high-level deep learning framework that works seamlessly
with low-level backends like TensorFlow, Theano or CNTK. In Keras a model is like a
sequence of layers where each output is fed into the following computational block until the
final layer is reached. The generic structure of a model is:

from keras.models import Sequential

>>> model = Sequential()

>>> model.add(...)
>>> model.add(...)
...
>>> model.add(...)

The class Sequential defines a generic empty model, that already implements all the
methods needed to add layers, compile the model according to the underlying framework,
to fit and evaluate the model and to predict the output given an input. All the most
common layers are already implemented, including:

Dense, Dropout and Flattening layers
Convolutional (1D, 2D and 3D) layers
Pooling layers
Zero padding layers
RNN layers

A model can be compiled using several loss functions (like MSE or cross-entropy) and all
the most diffused Stochastic Gradient Descent optimization algorithms (like RMSProp or
Adam). For further details about the mathematical foundation of these methods, please
refer to Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press. As it's impossible
to discuss all important elements in such a short space, I prefer to create a complete
example of image classification based on a convolutional network. The dataset we're going
to use is the CIFAR-10 (h t t p s ://w w w . c s . t o r o n t o . e d u /~k r i z /c i f a r . h t m l ) which is made
up of 60000 small RGB images (32 x 32) belonging to 10 different categories (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck). In the following figure, a subset of
images is shown:
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Since the last release, Keras allows us to download this dataset using a built-in function;
therefore, no further actions are required to use it.

The first step is loading the dataset and splitting it into training and test subsets:

from keras.datasets import cifar10

>>> (X_train, Y_train), (X_test, Y_test) = cifar10.load_data()
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The training dataset contains 50000 images, while the test set 10000. Now it's possible to
build the model. We want to use a few convolutional layers to capture the specific elements
of each category. As explained in the previous section, these particular layers can learn to
identify specific geometric properties and generalize in an excellent way. In our small
architecture, we start with a (5 x 5) filter size to capture all the low-level features (like the
orientation) and proceed by increasing the number of filters and reducing their size. In this
way, the high-level features (like the shape of a wheel or the relative position of eyes, nose,
and mouth) can also be captured.

from keras.models import Sequential
from keras.layers.convolutional import Conv2D, ZeroPadding2D
from keras.layers.pooling import MaxPooling2D

>>> model = Sequential()

>>> model.add(Conv2D(32, kernel_size=(5, 5), activation='relu',
input_shape=(32 ,32, 3)))
>>> model.add(MaxPooling2D(pool_size=(2, 2)))

>>> model.add(Conv2D(64, kernel_size=(4, 4), activation='relu'))
>>> model.add(ZeroPadding2D((1, 1)))

>>> model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
>>> model.add(MaxPooling2D(pool_size=(2, 2)))
>>> model.add(ZeroPadding2D((1, 1)))

The first instruction creates a new empty model. At this point, we can all the layers we want
to include in the computational graph. The most common parameters of a convolutional
layer are:

The number of filters
Kernel size (as tuple)
Strides (the default value is [1, 1]). This parameter specifies how many pixels the
sliding window must consider when shifting on the image. [1, 1] means that no
pixels are discarded. [2, 2] means that every horizontal and vertical shift will have
a width of 2 pixels and so forth.
Activation (the default value is None, meaning that the identity function will be
used)
Input shape (only for the first layer is this parameter mandatory)
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Our first layer has 32 (5 x 5) filters with a ReLU (Rectified Linear Unit) activation. This 
function is defined as:

The second layer reduces the dimensionality with a max pooling considering (2 x 2) blocks.
Then we apply another convolution with 64 (4 x 4) filters followed by a zero padding (1
pixel at the top, bottom, left and right side of the input) and finally, we have the third
convolutional layer with 128 (3 x 3) filters followed by a max pooling and a zero padding.

At this point, we need to flatten the output of the last layer, so to work like in a MLP:

from keras.layers.core import Dense, Dropout, Flatten

>>> model.add(Dropout(0.2))
>>> model.add(Flatten())
>>> model.add(Dense(128, activation='relu'))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(10, activation='softmax'))

A dropout (with a probability of 0.2) is applied to the output of the last zero-padding layer;
then this multidimensional value is flattened and transformed in a vector. This value is fed
into a fully-connected layer with 128 neurons and ReLU activation. Another dropout is
applied to the output (to prevent the overfitting) and, finally, this vector is fed into another
fully connected layer with 10 neurons with a softmax activation:

In this way, the output of the model represents a discrete probability distribution (each
value is the probability of the corresponding class).

The last step before training the model is compiling it:

>>> model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

Keras will transform the high-level description into low-level operations (like the ones we
have discussed in the previous section) with a categorical cross-entropy loss function (see
the example of TensorFlow logistic regression) and the Adam optimizer. Moreover, it will
apply an accuracy metric to dynamically evaluate the performance.
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At this point, the model can be trained. We need only two preliminary operations:

Normalizing the images so they have values between 0 and 1
Applying the one-hot encoding to the integer label

The first operation can be simply performed by dividing the dataset by 255, while the
second can be easily carried out using the built-in function to_categorical():

from keras.utils import to_categorical

>>> model.fit(X_train / 255.0, to_categorical(Y_train), batch_size=32,
epochs=15)

We want to train with batches made up of 32 images and for a period of 15 epochs. The
reader is free to change all these values to compare the results. The output provided by
Keras shows the progress in the learning phase:

Epoch 1/15
50000/50000 [==============================] - 25s - loss: 1.5845 - acc:
0.4199
Epoch 2/15
50000/50000 [==============================] - 24s - loss: 1.2368 - acc:
0.5602
Epoch 3/15
50000/50000 [==============================] - 26s - loss: 1.0678 - acc:
0.6247
Epoch 4/15
50000/50000 [==============================] - 25s - loss: 0.9495 - acc:
0.6658
Epoch 5/15
50000/50000 [==============================] - 26s - loss: 0.8598 - acc:
0.6963
Epoch 6/15
50000/50000 [==============================] - 26s - loss: 0.7829 - acc:
0.7220
Epoch 7/15
50000/50000 [==============================] - 26s - loss: 0.7204 - acc:
0.7452
Epoch 8/15
50000/50000 [==============================] - 26s - loss: 0.6712 - acc:
0.7629
Epoch 9/15
50000/50000 [==============================] - 27s - loss: 0.6286 - acc:
0.7779
Epoch 10/15
50000/50000 [==============================] - 27s - loss: 0.5753 - acc:
0.7952
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Epoch 11/15
50000/50000 [==============================] - 27s - loss: 0.5433 - acc:
0.8049
Epoch 12/15
50000/50000 [==============================] - 27s - loss: 0.5112 - acc:
0.8170
Epoch 13/15
50000/50000 [==============================] - 27s - loss: 0.4806 - acc:
0.8293
Epoch 14/15
50000/50000 [==============================] - 28s - loss: 0.4551 - acc:
0.8365
Epoch 15/15
50000/50000 [==============================] - 28s - loss: 0.4342 - acc:
0.8444

At the end of the 15th epoch, the accuracy on the training set is about 84% (a very good
result). The final operation is evaluating the model with the test set:

>>> scores = model.evaluate(X_test / 255.0, to_categorical(Y_test))
>>> print('Loss: %.3f' % scores[0])
>>> print('Accuracy: %.3f' % scores[1])
Loss: 0.972
Accuracy: 0.719

The final validation accuracy is lower (about 72%) than the one achieved during the training
phase. This is a normal behavior for deep models, therefore, when optimizing the
algorithm, it's always a good practice to use the cross validation or a well-defined test set
(with the same distribution of the training set and 25-30% of total samples).

Of course, we have presented a very simple architecture, but the reader can go deeper into
these topics and create more complex models (Keras also contains some very famous pre-
trained architectures like VGG16/19 and Inception V3 that can also be used to perform
image classifications with 1000 categories).

All the information needed to install Keras with different backends, and
the official documentation can be found on the website:
h t t p s ://k e r a s . i o
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Summary
In this chapter, we have briefly discussed some basic deep learning concepts, and the reader
should now understand what a computational graph is and how it can be modeled using
TensorFlow. A deep architecture, in fact, can be seen as a sequence of layers connected to
each other. They can have different characteristics and purposes, but the overall graph is
always a directed structure that associates input values with a final output layer. Therefore,
it's possible to derive a global loss function that will be optimized by a training algorithm.
We also saw how TensorFlow computes the gradients of an output tensor with respect to
any previous connected layer and therefore how it's possible to implement the standard
back-propagation strategy seamlessly to deep architectures. We did not discuss actual deep
learning problems and methods because they require much more space; however, the
reader can easily find many valid resources to continue his/her exploration in this
fascinating field.

In the next chapter, we're going to summarize many of the concepts previously discussed in
order to create complex machine learning architectures.
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Creating a Machine Learning

Architecture
In this chapter, we're going to summarize many of the concepts discussed in the book with
the purpose of defining a complete machine learning architecture that is able to preprocess
the input data, decompose/augment it, classify/cluster it, and eventually, show the results
using graphical tools. We're also going to show how scikit-learn manages complex pipelines
and how it's possible to fit them, and search for the optimal parameters in the global context
of a complete architecture.

Machine learning architectures
Until now we have discussed single methods that could be employed to solve specific
problems. However, in real contexts, it's very unlikely to have well-defined datasets that
can be immediately fed into a standard classifier or clustering algorithm. A machine
learning engineer often has to design a full architecture that a non-expert could consider
like a black-box where the raw data enters and the outcomes are automatically produced.
All the steps necessary to achieve the final goal must be correctly organized and seamlessly
joined together in a processing chain similar to a computational graph (indeed, it's very
often a direct acyclic graph). Unfortunately, this is a non-standard process, as every real-life
problem has its own peculiarities. However, there are some common steps which are
normally included in almost any ML pipeline.
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In the following picture, there's a schematic representation of this process:

Now we will briefly explain the details of each phase with some possible solutions.
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Data collection
The first step is always the most generic because it depends on each single context.
However, before working with any data, it's necessary to collect it from all the sources
where it's stored. The ideal situation is to have a comma separated values (CSV) (or
another suitable format) dump that can be immediately loaded, but more often, the
engineer has to look for all the database tables, define the right SQL query to collect all the
pieces of information, and manage data type conversion and encoding. We're not going to
discuss this topic, but it's important not to under-evaluate this stage because it can be much
more difficult than expected. I suggest, whenever possible, to extract flattened tables, where
all the fields are placed on the same row, because it's easier to manipulate a large amount of
data using a DBMS or a big data tool, but it can be very time and memory consuming if
done on a normal PC directly with Python tools. Moreover, it's important to use a standard
character encoding for all text fields. The most common choice is UTF-8, but it's also
possible to find DB tables encoded with other charsets and normally it's a good practice to
convert all the documents before starting with the other operations. A very famous and
powerful Python library for data manipulation is pandas (part of SciPy). It's based on the
concept of DataFrame (an abstraction of SQL table) and implements many methods that
allow the selection, joining, grouping, and statistical processing of datasets that can fit in
memory. In Heydt M., Learning pandas - Python Data Discovery and Analysis Made Easy, Packt,
the reader can find all the information needed to use this library to solve many real-life
problems. A common problem that must be managed during this phase, is imputing the
missing features. In Chapter 3, Feature Selection and Feature Engineering, we discussed some
practical methods that can be employed automatically before starting with the following
steps.
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Normalization
Normalizing a numeric dataset is one of the most important steps, particularly when
different features have different scales. In Chapter 3, Feature Selection and Feature
Engineering, we discussed several methods that can be employed to solve this problem.
Very often, it's enough to use a StandardScaler to whiten the data, but sometimes it's
better to consider the impact of noisy features on the global trend and use a RobustScaler
to filter them out without the risk of conditioning the remaining features. The reader can
easily verify the different performances of the same classifier (in particular, SVMs and
neural networks) when working with normalized and unnormalized datasets. As we're
going to see in the next section, it's possible to include the normalization step in the
processing pipeline as one of the first actions and include the C parameter in grid search in
order to impose an L1/L2 weight normalization during the training phase (see the
importance of regularization in Chapter 4, Linear Regression, when discussing about Ridge,
Lasso and ElasticNet).

Dimensionality reduction
This step is not always mandatory, but, in many cases, it can be a good solution to memory
leaks or long computational times. When the dataset has many features, the probability of
some hidden correlation is relatively high. For example, the final price of a product is
directly influenced by the price of all materials and, if we remove one secondary element,
the value changes slightly (more generally speaking, we can say that the total variance is
almost preserved). If you remember how PCA works, you know that this process
decorrelates the input data too. Therefore, it's useful to check whether a PCA or a Kernel
PCA (for non-linear datasets) can remove some components while keeping the explained
variance close to 100 percent (this is equivalent to compressing the data with minimum
information loss). There are also other methods discussed in Chapter 3, Feature Selection and
Feature Engineering (like NMF or SelectKBest), that can be useful for selecting only the best
features according to various criteria (like ANOVA or chi-squared). Testing the impact of
each factor during the initial phases of the project can save time that can be useful when it's
necessary to evaluate slower and more complex algorithms.
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Data augmentation
Sometimes the original dataset has only a few non-linear features and it's quite difficult for
a standard classifier to capture the dynamics. Moreover, forcing an algorithm on a complex
dataset can result in overfitting the model because all the capacity is exhausted in trying to
minimize the error considering only the training set, and without taking into account the
generalization ability. For this reason, it's sometimes useful to enrich the dataset with
derived features that are obtained through functions of the existing ones.
PolynomialFeatures is an example of data augmentation that can really improve the
performances of standard algorithms and avoid overfitting. In other cases, it can be useful
to introduce trigonometric functions (like sin(x) or cos(x)) or correlating features (like x1x2).
The former allows a simpler management of radial datasets, while the latter can provide the
classifier with information about the cross-correlation between two features. In general,
data augmentation can be employed before trying a more complex algorithm; for example,
a logistic regression (that is a linear method) can be successfully applied to augmented non-
linear datasets (we saw a similar situation in Chapter 4, Linear Regression, when we had
discussed the polynomial regression). The choice to employ a more complex (with higher
capacity) model or to try to augment the dataset is up to the engineer and must be
considered carefully, taking into account both the pros and the cons. In many cases, for
example, it's preferable not to modify the original dataset (which could be quite large), but
to create a scikit-learn interface to augment the data in real time. In other cases, a neural
model can provide faster and more accurate results without the need for data
augmentation. Together with parameter selection, this is more of an art than a real science,
and the experiments are the only way to gather useful knowledge.

Data conversion
This step is probably the simplest and, at the same time, the most important when handling
categorical data. We have discussed several methods to encode labels using numerical
vectors and it's not necessary to repeat the concepts already explained. A general rule
concerns the usage of integer or binary values (one-hot encoding). The latter is probably the
best choice when the output of the classifier is the value itself, because, as discussed in
Chapter 3, Feature Selection and Feature Engineering, it's much more robust to noise and
prediction errors. On the other hand, one-hot encoding is quite memory-consuming.
Therefore, whenever it's necessary to work with probability distributions (like in NLP), an
integer label (representing a dictionary entry or a frequency/count value) can be much more
efficient.



Creating a Machine Learning Architecture

[ 325 ]

Modeling/Grid search/Cross-validation
Modeling implies the choice of the classification/clustering algorithm that best suits every
specific task. We have discussed different methods and the reader should be able to
understand when a set of algorithms is a reasonable candidate, and when it's better to look
for another strategy. However, the success of a machine learning technique often depends
on the right choice of each parameter involved in the model as well. As already discussed,
when talking about data augmentation, it's very difficult to find a precise method to
determine the optimal values to assign, and the best approach is always based on a grid
search. scikit-learn provides a very flexible mechanism to investigate the performance of a
model with different parameter combinations, together with cross-validation (that allows a
robust validation without reducing the number of training samples), and this is indeed a
more reasonable approach, even for experts engineers. Moreover, when performing
different transformations, the effect of a choice can impact the whole pipeline, and,
therefore, (we're going to see a few examples in the next section) I always suggest for
application of the grid search to all components at the same time, to be able to evaluate the
cross-influence of each possible choice.

Visualization
Sometimes, it's useful/necessary to visualize the results of intermediate and final steps. In
this book, we have always shown plots and diagrams using matplotlib, which is part of
SciPy and provides a flexible and powerful graphics infrastructure. Even if it's not part of
the book, the reader can easily modify the code in order to get different results; for a deeper
understanding, refer to Mcgreggor D., Mastering matplotlib, Packt. As this is an evolving
sector, many new projects are being developed, offering new and more stylish plotting
functions. One of them is Bokeh (h t t p ://b o k e h . p y d a t a . o r g ), that works using some
JavaScript code to create interactive graphs that can be embedded into web pages too.

scikit-learn tools for machine learning
architectures
Now we're going to present two very important scikit-learn classes that can help the
machine learning engineer to create complex processing structures including all the steps
needed to generate the desired outcomes from the raw datasets.
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Pipelines
scikit-learn provides a flexible mechanism for creating pipelines made up of subsequent
processing steps. This is possible thanks to a standard interface implemented by the
majority of classes therefore most of the components (both data processors/transformers
and classifiers/clustering tools) can be exchanged seamlessly. The class Pipeline accepts a
single parameter steps, which is a list of tuples in the form (name of the
component—instance), and creates a complex object with the standard fit/transform
interface. For example, if we need to apply a PCA, a standard scaling, and then we want to
classify using a SVM, we could create a pipeline in the following way:

from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

>>> pca = PCA(n_components=10)
>>> scaler = StandardScaler()
>>> svc = SVC(kernel='poly', gamma=3)

>>> steps = [
>>>    ('pca', pca),
>>>    ('scaler', scaler),
>>>    ('classifier', svc)
>>> ]

>>> pipeline = Pipeline(steps)

At this point, the pipeline can be fitted like a single classifier (using the standard methods
fit() and fit_transform()), even if the the input samples are first passed to the PCA
instance, the reduced dataset is normalized by the StandardScaler instance, and finally,
the resulting samples are passed to the classifier.

A pipeline is also very useful together with GridSearchCV, to evaluate different
combinations of parameters, not limited to a single step but considering the whole process.
Considering the previous example, we can create a dummy dataset and try to find the
optimal parameters:

from sklearn.datasets import make_classification

>>> nb_samples = 500
>>> X, Y = make_classification(n_samples=nb_samples, n_informative=15,
n_redundant=5, n_classes=2)
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The dataset is quite redundant. Therefore, we need to find the optimal number of
components for PCA and the best kernel for the SVM. When working with a pipeline, the
name of the parameter must be specified using the component ID followed by a double
underscore and then the actual name, for example, classifier__kernel (if you want to
check all the acceptable parameters with the right name, it's enough to execute:
print(pipeline.get_params().keys())). Therefore, we can perform a grid search
with the following parameter dictionary:

from sklearn.model_selection import GridSearchCV

>>> param_grid = {
>>>    'pca__n_components': [5, 10, 12, 15, 18, 20],
>>>    'classifier__kernel': ['rbf', 'poly'],
>>>    'classifier__gamma': [0.05, 0.1, 0.2, 0.5],
>>>    'classifier__degree': [2, 3, 5]
>>> }

>>> gs = GridSearchCV(pipeline, param_grid)
>>> gs.fit(X, Y)

As expected, the best estimator (which is a complete pipeline) has 15 principal components
(that means they are uncorrelated) and a radial-basis function SVM with a relatively high
gamma value (0.2):

>>> print(gs.best_estimator_)
Pipeline(steps=[('pca', PCA(copy=True, iterated_power='auto',
n_components=15, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('scaler',
StandardScaler(copy=True, with_mean=True, with_std=True)), ('classifier',
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=2, gamma=0.2, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))])

The corresponding score is:

>>> print(gs.best_score_)
0.96
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It's also possible to use a Pipeline together with GridSearchCV to evaluate different
combinations. For example, it can be useful to compare some decomposition methods,
mixed with various classifiers:

from sklearn.datasets import load_digits
from sklearn.decomposition import NMF
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression

>>> digits = load_digits()

>>> pca = PCA()
>>> nmf = NMF()
>>> kbest = SelectKBest(f_classif)
>>> lr = LogisticRegression()

>>> pipeline_steps = [
>>>    ('dimensionality_reduction', pca),
>>>    ('normalization', scaler),
>>>    ('classification', lr)
>>> ]

>>> pipeline = Pipeline(pipeline_steps)

We want to compare principal component analysis (PCA), non-negative matrix
factorization (NMF), and k-best feature selection based on the ANOVA criterion, together
with logistic regression and kernelized SVM:

>>> pca_nmf_components = [10, 20, 30]

>>> param_grid = [
>>>    {
>>>        'dimensionality_reduction': [pca],
>>>        'dimensionality_reduction__n_components': pca_nmf_components,
>>>        'classification': [lr],
>>>        'classification__C': [1, 5, 10, 20]
>>>    },
>>>    {
>>>        'dimensionality_reduction': [pca],
>>>        'dimensionality_reduction__n_components': pca_nmf_components,
>>>        'classification': [svc],
>>>        'classification__kernel': ['rbf', 'poly'],
>>>        'classification__gamma': [0.05, 0.1, 0.2, 0.5, 1.0],
>>>        'classification__degree': [2, 3, 5],
>>>        'classification__C': [1, 5, 10, 20]
>>>    },
>>>    {
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>>>        'dimensionality_reduction': [nmf],
>>>        'dimensionality_reduction__n_components': pca_nmf_components,
>>>        'classification': [lr],
>>>        'classification__C': [1, 5, 10, 20]
>>>    },
>>>    {
>>>        'dimensionality_reduction': [nmf],
>>>        'dimensionality_reduction__n_components': pca_nmf_components,
>>>        'classification': [svc],
>>>        'classification__kernel': ['rbf', 'poly'],
>>>        'classification__gamma': [0.05, 0.1, 0.2, 0.5, 1.0],
>>>        'classification__degree': [2, 3, 5],
>>>        'classification__C': [1, 5, 10, 20]
>>>    },
>>>    {
>>>        'dimensionality_reduction': [kbest],
>>>        'classification': [svc],
>>>        'classification__kernel': ['rbf', 'poly'],
>>>        'classification__gamma': [0.05, 0.1, 0.2, 0.5, 1.0],
>>>        'classification__degree': [2, 3, 5],
>>>        'classification__C': [1, 5, 10, 20]
>>>    },
>>> ]

>>> gs = GridSearchCV(pipeline, param_grid)
>>> gs.fit(digits.data, digits.target)

Performing a grid search, we get the pipeline made up of PCA with 20 components (the
original dataset 64 features) and an RBF SVM with a very small gamma value (0.05) and a
medium (5.0) L2 penalty parameter C :

>>> print(gs.best_estimator_)
Pipeline(steps=[('dimensionality_reduction', PCA(copy=True,
iterated_power='auto', n_components=20, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)), ('normalization',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('classification', SVC(C=5.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=2, gamma=0.05, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))])

Considering the need to capture small details in the digit representations, these values are
an optimal choice. The score for this pipeline is indeed very high:

>>> print(gs.best_score_)
0.968836950473
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Feature unions
Another interesting class provided by scikit-learn is FeatureUnion, which allows
concatenating different feature transformations into a single output matrix. The main
difference with a pipeline (which can also include a feature union) is that the pipeline
selects from alternative scenarios, while a feature union creates a unified dataset where
different preprocessing outcomes are joined together. For example, considering the
previous results, we could try to optimize our dataset by performing a PCA with 10
components joined with the selection of the best 5 features chosen according to the ANOVA
metric. In this way, the dimensionality is reduced to 15 instead of 20:

from sklearn.pipeline import FeatureUnion

>>> steps_fu = [
>>>    ('pca', PCA(n_components=10)),
>>>    ('kbest', SelectKBest(f_classif, k=5)),
>>> ]

>>> fu = FeatureUnion(steps_fu)

>>> svc = SVC(kernel='rbf', C=5.0, gamma=0.05)

>>> pipeline_steps = [
>>>    ('fu', fu),
>>>    ('scaler', scaler),
>>>    ('classifier', svc)
>>> ]

>>> pipeline = Pipeline(pipeline_steps)

We already know that a RBF SVM is a good choice, and, therefore, we keep the remaining
part of the architecture without modifications. Performing a cross-validation, we get:

from sklearn.model_selection import cross_val_score

>>> print(cross_val_score(pipeline, digits.data, digits.target,
cv=10).mean())
0.965464333604
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The score is slightly lower than before (< 0.002) but the number of features has been
considerably reduced and therefore also the computational time. Joining the outputs of
different data preprocessors is a form of data augmentation and it must always be taken
into account when the original number of features is too high or redundant/noisy and a
single decomposition method doesn't succeed in capturing all the dynamics.

References
Mcgreggor D., Mastering matplotlib, Packt
Heydt M., Learning pandas - Python Data Discovery and Analysis Made Easy, Packt

Summary
In this final chapter, we discussed the main elements of machine learning architecture,
considering some common scenarios and the procedures that are normally employed to
prevent issues and improve the global performance. None of these steps should be
discarded without a careful evaluation because the success of a model is determined by the
joint action of many parameter, and hyperparameters, and finding the optimal final
configuration starts with considering all possible preprocessing steps.

We saw that a grid search is a powerful investigation tool and that it's often a good idea to
use it together with a complete set of alternative pipelines (with or without feature unions),
so as to find the best solution in the context of a global scenario. Modern personal
computers are fast enough to test hundreds of combinations in a few hours, and when the
datasets are too large, it's possible to provision a cloud server using one of the existing
providers.

Finally, I'd like to repeat that till now (also considering the research in the deep learning
field), creating an up-and-running machine learning architecture needs a continuous
analysis of alternative solutions and configurations, and there's no silver bullet for any but
the simplest cases. This is a science that still keeps an artistic heart!
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